Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_3_a0, author = {I. N. Safonova and V. G. Safonov}, title = {On some properties of the lattice of totally $\sigma$-local formations of finite groups}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--16}, publisher = {mathdoc}, volume = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/} }
TY - JOUR AU - I. N. Safonova AU - V. G. Safonov TI - On some properties of the lattice of totally $\sigma$-local formations of finite groups JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 6 EP - 16 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/ LA - en ID - BGUMI_2020_3_a0 ER -
%0 Journal Article %A I. N. Safonova %A V. G. Safonov %T On some properties of the lattice of totally $\sigma$-local formations of finite groups %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 6-16 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/ %G en %F BGUMI_2020_3_a0
I. N. Safonova; V. G. Safonov. On some properties of the lattice of totally $\sigma$-local formations of finite groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 6-16. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/
[1] L. A. Shemetkov, “Formatsii konechnykh grupp”, Moskva: Nauka, 1978, 272 | MR
[2] A. N. Skiba, “Algebra formatsii”, Minsk: Belaruskaya navuka, 1997, 240 | MR | Zbl
[3] K. Doerk, T. O. Hawkes, “Finite soluble groups”, Berlin: Walter de Gruyter, 1992, 910 | DOI | MR
[4] A. N. Skiba, “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 34(1) (2018), 79–82 | MR | Zbl
[5] Chi. Zhang, A. N. Skiba, “On sum of (in exp. sigma with index t)-closed classes of finite groups”, Ukrainian Mathematical Journal, 70(12) (2019), 1966–1977 | DOI | MR | Zbl
[6] Z. Chi, A. N. Skiba, “A generalization of Kramer’s theory”, Acta Mathematica Hungarica, 158(1) (2019), 87–99 | DOI | MR | Zbl
[7] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2019), 35–47 | DOI | MR | Zbl
[8] Chi. Zhang, V. G. Safonov, A. N. Skiba, “On one application of the theory of n-multiply sigma-local formations of finite groups”, Problems of Physics, Mathematics and Technics, 35(2) (2018), 85–88 | MR | Zbl
[9] Chi. Zhang, V. G. Safonov, A. N. Skiba, “On n-multiply sigma-local formations of finite groups”, Communications in Algebra, 47(3) (2019), 957–968 | DOI | MR | Zbl
[10] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, Journal of Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[11] A. Tsarev, “Laws of the lattices of sigma-local formations of finite groups”, Mediterranean Journal of Mathematics, 17(3) (2020), 75 | DOI | MR | Zbl
[12] V. G. Safonov, I. N. Safonova, A. N. Skiba, “On one generalization of sigma-local and Baer-local formations”, Problems of Physics, Mathematics and Technics, 41(4) (2019), 65–69 | MR | Zbl
[13] V. G. Safonov, I. N. Safonova, A. N. Skiba, “On Baer-sigma-local formations of finite groups”, Communications in Algebra, 48(9) (2020), 4002–4012 | DOI | MR | Zbl
[14] A. N. Skiba, “On sigma-subnormal and sigma-permutable subgroups of finite groups”, Journal of Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[15] V. G. Safonov, “The property of being algebraic for the lattice of all tau-closed totally saturated formations”, Algebra and Logic, 45(5) (2006), 353–356 | DOI | MR | Zbl
[16] V. G. Safonov, “On a question of the theory of totally saturated formations of finite groups”, Algebra Colloquium, 15(1) (2008), 119–128 | DOI | MR | Zbl
[17] V. G. Safonov, “On modularity of the lattice of totally saturated formations of finite groups”, Communications in Algebra, 35(11) (2007), 3495–3502 | DOI | MR | Zbl