On some properties of the lattice of totally $\sigma$-local formations of finite groups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 6-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper, all groups are finite. Let $\sigma=\{\sigma_{i}|i\in I\}$ be some partition of the set of all primes $\mathbb{P}$. If $n$ is an integer, $G$ is a group, and $\mathfrak{F}$ is a class of groups, then $\sigma(n)=\{\sigma_{i}|\sigma_{i} \cap \pi(n)\neq \varnothing\}$, $\sigma(G)=\sigma(|G|)$ and $\sigma(\mathfrak{F})=\cup_{G\in \mathfrak{F}} \sigma(G)$. A function $f$ of the form $f:\sigma\rightarrow$ {formations of groups} is called a formation $\sigma$-function. For any formation $\sigma$-function $f$ the class $LF_{\sigma}(f)$ is defined as follows: $LF_{\sigma}(f)=(G|G=1$ или $G\neq 1$ и $ G\backslash O_{\sigma'_{i},\sigma_{i}}(G)\in f(\sigma_{i})$ для всех $\sigma_{i}\in \sigma(G))$. If for some formation $\sigma$-function $f$ we have $\mathfrak{F}=LF_{\sigma}(f)$, then the class $\mathfrak{F}$ is called $\sigma$-local and $f$ is called a $\sigma$-local definition of $\mathfrak{F}$. Every formaton is called $0$-multiply $\sigma$-local. For $n > 0$, a formation $\mathfrak{F}$ is called $n$-multiply $\sigma$-local provided either $\mathfrak{F} = (1)$ is the class of all identity groups or $\mathfrak{F} = LF_{\sigma}(f)$, where $f(\sigma_{i})$ is $(n-1)$-multiply $\sigma$-local for all $\sigma_{i}\in \sigma(\mathfrak{F})$. A formation is called totally $\sigma$-local if it is $n$-multiply $\sigma$-local for all non-negative integer $n$. The aim of this paper is to study properties of the lattice of totally $\sigma$-local formations. In particular, we prove that the lattice of all totally$\sigma$-local formations is algebraic and distributive.
Keywords: finite group; formation $\sigma$-function; formation of finite groups; totally $\sigma$-local formation; lattice of formations.
@article{BGUMI_2020_3_a0,
     author = {I. N. Safonova and V. G. Safonov},
     title = {On some properties of the lattice of totally $\sigma$-local formations of finite groups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--16},
     publisher = {mathdoc},
     volume = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/}
}
TY  - JOUR
AU  - I. N. Safonova
AU  - V. G. Safonov
TI  - On some properties of the lattice of totally $\sigma$-local formations of finite groups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 6
EP  - 16
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/
LA  - en
ID  - BGUMI_2020_3_a0
ER  - 
%0 Journal Article
%A I. N. Safonova
%A V. G. Safonov
%T On some properties of the lattice of totally $\sigma$-local formations of finite groups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 6-16
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/
%G en
%F BGUMI_2020_3_a0
I. N. Safonova; V. G. Safonov. On some properties of the lattice of totally $\sigma$-local formations of finite groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 6-16. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a0/

[1] L. A. Shemetkov, “Formatsii konechnykh grupp”, Moskva: Nauka, 1978, 272 | MR

[2] A. N. Skiba, “Algebra formatsii”, Minsk: Belaruskaya navuka, 1997, 240 | MR | Zbl

[3] K. Doerk, T. O. Hawkes, “Finite soluble groups”, Berlin: Walter de Gruyter, 1992, 910 | DOI | MR

[4] A. N. Skiba, “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 34(1) (2018), 79–82 | MR | Zbl

[5] Chi. Zhang, A. N. Skiba, “On sum of (in exp. sigma with index t)-closed classes of finite groups”, Ukrainian Mathematical Journal, 70(12) (2019), 1966–1977 | DOI | MR | Zbl

[6] Z. Chi, A. N. Skiba, “A generalization of Kramer’s theory”, Acta Mathematica Hungarica, 158(1) (2019), 87–99 | DOI | MR | Zbl

[7] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2019), 35–47 | DOI | MR | Zbl

[8] Chi. Zhang, V. G. Safonov, A. N. Skiba, “On one application of the theory of n-multiply sigma-local formations of finite groups”, Problems of Physics, Mathematics and Technics, 35(2) (2018), 85–88 | MR | Zbl

[9] Chi. Zhang, V. G. Safonov, A. N. Skiba, “On n-multiply sigma-local formations of finite groups”, Communications in Algebra, 47(3) (2019), 957–968 | DOI | MR | Zbl

[10] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, Journal of Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[11] A. Tsarev, “Laws of the lattices of sigma-local formations of finite groups”, Mediterranean Journal of Mathematics, 17(3) (2020), 75 | DOI | MR | Zbl

[12] V. G. Safonov, I. N. Safonova, A. N. Skiba, “On one generalization of sigma-local and Baer-local formations”, Problems of Physics, Mathematics and Technics, 41(4) (2019), 65–69 | MR | Zbl

[13] V. G. Safonov, I. N. Safonova, A. N. Skiba, “On Baer-sigma-local formations of finite groups”, Communications in Algebra, 48(9) (2020), 4002–4012 | DOI | MR | Zbl

[14] A. N. Skiba, “On sigma-subnormal and sigma-permutable subgroups of finite groups”, Journal of Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[15] V. G. Safonov, “The property of being algebraic for the lattice of all tau-closed totally saturated formations”, Algebra and Logic, 45(5) (2006), 353–356 | DOI | MR | Zbl

[16] V. G. Safonov, “On a question of the theory of totally saturated formations of finite groups”, Algebra Colloquium, 15(1) (2008), 119–128 | DOI | MR | Zbl

[17] V. G. Safonov, “On modularity of the lattice of totally saturated formations of finite groups”, Communications in Algebra, 35(11) (2007), 3495–3502 | DOI | MR | Zbl