Estimation of the mechanical properties for bone – titanium biocomposite based on computed tomography data and finite element modeling
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this work is to study the effect of bone ingrowth into open pores of the implant and estimate of the mechanical characteristics for obtained biocomposite. Reconstruction of the isotropic model based on data acquired from computed tomography allows us to study the metallic and bone components integration under compressive load. Results are compared to performed mechanical tests of the porous specimen. The finite element modeling allows obtaining a stress-stain curve for the bone – titanium biocomposite. Young’s modulus of the metallic specimen is increased by $29\%$ after pores is filled with bone tissues. The conditional yield strength of the bone – titanium biocomposite is 2 times higher than that of porous open-pore titanium.
Keywords: finite element analysis; osteointegration; computed tomography; porous structure.
@article{BGUMI_2020_2_a7,
     author = {A. V. Nikitin},
     title = {Estimation of the mechanical properties for bone {\textendash} titanium biocomposite based on computed tomography data and finite element modeling},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {79--85},
     publisher = {mathdoc},
     volume = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a7/}
}
TY  - JOUR
AU  - A. V. Nikitin
TI  - Estimation of the mechanical properties for bone – titanium biocomposite based on computed tomography data and finite element modeling
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 79
EP  - 85
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a7/
LA  - ru
ID  - BGUMI_2020_2_a7
ER  - 
%0 Journal Article
%A A. V. Nikitin
%T Estimation of the mechanical properties for bone – titanium biocomposite based on computed tomography data and finite element modeling
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 79-85
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a7/
%G ru
%F BGUMI_2020_2_a7
A. V. Nikitin. Estimation of the mechanical properties for bone – titanium biocomposite based on computed tomography data and finite element modeling. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 79-85. http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a7/

[1] G. Tozzi, Q-H. Zhang, C. Lupton, J. Tong, T. Guillen, A. Ohrndorf, “Characterisation of a metallic foam – cement composite under selected loading conditions”, Journal of Materials Science. Materials in Medicine, 24(11) (2013), 2509–2518 | DOI

[2] . Nikitin, “Konechno-elementnyi analiz effekta vrastaniya kostnykh tkanei v protsesse osteointegratsii bestsementnogo endoproteza”, Izvestiya Saratovskogo universiteta. Matematika. Mekhanika. Informatika, 13(4-1) (2013), 90–96

[3] A. V. Nikitin, G. I. Mikhasev, A. P. Maslov, “Konechno-elementnyi analiz vliyaniya oblasti vrastaniya na stabilnost endoproteza tazobedrennogo sustava”, Mekhanika mashin, mekhanizmov i materialov, 1 (2012), 86–89

[4] H. Li, S. M. Oppenheimer, S. I. Stupp, D. C. Dunand, L. C. Brinson, “Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material”, Materials Transactions, 45(4) (2004), 1124–1131 | DOI

[5] A. P. Maslov, A. V. Rutskii, A. V. Nikitin, “Perelomy bedrennogo komponenta endoprotezov tazobedrennogo sustava sistemy SLPS”, Meditsina, 1 (2013), 7–13

[6] Z. Esen, Bor. Tarhan, S. Bor, “Characterization of loose powder sintered porous titanium and Ti6Al4V alloy”, Turkish Journal of Engineering and Environmental Sciences, 33(3) (2009), 207–219 | DOI

[7] S. Thelen, F. Barthelat, L. C. Brinson, “Mechanics considerations for microporous titanium as an orthopedic implant material”, Journal of Biomedical Materials Research, 69A(4) (2004), 601–610 | DOI

[8] LMR. de-Vasconcellos, D. O. Leite, F. O. Nascimento, LGO. de-Vasconcellos, MLdeA. Graca, Y. R. Carvalho, “Porous titanium for biomedical applications: an experimental study on rabbits”, Medicina Oral, Patologia Oral y Cirugia Bucal, 15(2) (2010), 407–412

[9] R. Singh, P. D. Lee, T. C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, “Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling”, Acta Biomaterialia, 6(6) (2010), 2342–2351 | DOI

[10] N. Michailidis, F. Stergioudi, H. Omar, D. Papadopoulos, D. N. Tsipas, “Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading”, Colloids and Surfaces A. Physicochemical and Engineering Aspects, 382(1–3) (2011), 124–131 | DOI

[11] N. Michailidis, F. Stergioudi, H. Omar, D. N. Tsipas, “Investigation of the mechanical behavior of open-cell Ni foams by experimental and FEM procedures”, Advanced Engineering Materials, 10(12) (2008), 1122–1126 | DOI

[12] I. I. Zhukovets, “Mekhanicheskie ispytaniya metallov”, 2-e izdanie, pererabotannoe i dopolnennoe, 1986, 199, Moskva: Vysshaya shkola

[13] A. V. Nikitin, S. V. Shilko, “Otsenka vliyaniya osteogeneza na mekhanicheskie svoistva poristogo titana pri szhatii”, Teoreticheskaya i prikladnaya mekhanika, 2013, 127–129, Minsk: BNTU