Generic BCH codes. Polynomial-norm error decoding
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 36-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classic Bose – Chaudhuri – Hocquenghem (BCH) codes is famous and well-studied part in the theory of error-correcting codes. Generalization of BCH codes allows us to expand the range of activities in the practical correction of errors. Some generic BCH codes are able to correct more errors than classic BCH code in one message block. So it is important to provide appropriate method of error correction. After our investigation it was found that polynomial-norm method is most convenient and effective for that task. The result of the study was a model of a polynomial-norm decoder for a generic BCH code at length 65.
Keywords: error correcting codes; Bose – Chaudhuri – Hocquenghem codes; automorphisms of codes; norm decoding method; polynomial-norm decoding method.
@article{BGUMI_2020_2_a2,
     author = {A. V. Kushnerov and V. A. Lipnitski},
     title = {Generic {BCH} codes. {Polynomial-norm} error decoding},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {36--48},
     publisher = {mathdoc},
     volume = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a2/}
}
TY  - JOUR
AU  - A. V. Kushnerov
AU  - V. A. Lipnitski
TI  - Generic BCH codes. Polynomial-norm error decoding
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 36
EP  - 48
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a2/
LA  - ru
ID  - BGUMI_2020_2_a2
ER  - 
%0 Journal Article
%A A. V. Kushnerov
%A V. A. Lipnitski
%T Generic BCH codes. Polynomial-norm error decoding
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 36-48
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a2/
%G ru
%F BGUMI_2020_2_a2
A. V. Kushnerov; V. A. Lipnitski. Generic BCH codes. Polynomial-norm error decoding. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 36-48. http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a2/

[1] FDzh. Mak-Vilyams, NDzhA. Sloen, “Teoriya kodov, ispravlyayuschikh oshibki”, Moskva: Svyaz, 1979, 744

[2] R. Morelos-Saragosa, “Iskusstvo pomekhoustoichivogo kodirovaniya. Metody, algoritmy, primenenie”, Moskva: Tekhnosfera, 2005, 320

[3] B. D. Kudryashov, “Osnovy teorii kodirovaniya”, Sankt-Peterburg: BKhV-Peterburg, 2016, 400

[4] V. K. Konopelko, V. A. Lipnitskii, V. D. Dvornikov, M. N. Bobov, A. I. Korolev, A. A. Boriskevich, “Teoriya prikladnogo kodirovaniya”, 2, Minsk: BGUIR, 2004

[5] V. K. Konopelko, V. A. Lipnitskii, “Teoriya norm sindromov i perestanovochnoe dekodirovanie pomekhoustoichivykh kodov”, Minsk: BGUIR, 2000, 241

[6] V. A. Lipnitskii, V. K. Konopelko, “Normennoe dekodirovanie pomekhoustoichivykh kodov i algebraicheskie uravneniya”, Minsk: Izdatelskii tsentr BGU, 2007, 239

[7] V. A. Lipnitskii, “Teoriya norm sindromov”, Minsk: BGUIR, 2011, 96

[8] V. A. Lipnitskii, E. V. Sereda, “Polinomialnye invarianty G-orbit oshibok v neprimitivnykh BChKh-kodakh s konstruktivnym rasstoyaniem 5”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupal. Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 9(1) (2019), 118–127

[9] V. A. Lipnitskii, E. V. Sereda, “Svoistva G-orbit troinykh oshibok i ikh invariantov v kodakh Bouza – Choudkhuri – Khokvingema C7”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk, 64(1) (2019), 110–117 | DOI

[10] A. V. Kushnerov, V. A. Lipnitskii, “Svoistva i primenenie polinomialnykh invariantov G-orbit oshibok v reversivnykh kodakh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2018), 21–28 | MR | Zbl

[11] R. Bleikhut, “Teoriya i praktika kodov, kontroliruyuschikh oshibki”, Moskva: Mir, 1986, 576

[12] R. Lidl, G. Niderraiter, “Konechnye polya”, 2, Moskva: Mir, 1988 | MR | Zbl

[13] C. C. Lu, L. R. Welch, “On automorphism groups of binary primitive BCH codes”, Proceedings of 1994 IEEE International symposium on information theory (Trondheim, Norway). Institute of Electrical and Electronics Engineers, 1994, 51 | DOI

[14] V. A. Lipnitskii, A. O. Oleksyuk, “Teoriya norm sindromov i plyus-dekodirovanie”, Doklady BGUIR, 8 (2014), 72–78

[15] V. A. Lipnitskii, A. O. Oleksyuk, “Perestanovochnyi dekoder dlya korrektsii mnogokratnykh oshibok neprimitivnymi BChKhkodami”, Doklady BGUIR, 3 (2015), 117–123

[16] A. V. Kushnerov, V. A. Lipnitskii, M. N. Koroleva, “Obobschennye kody Bouza–Choudkhuri–Khokvingema i ikh parametry”, Vestnik Polotskogo gosudarstvennogo universiteta. Fundamentalnye nauki, 4 (2018), 28–33

[17] A. V. Kushnerov, V. A. Lipnitskii, M. N. Koroleva, “Svoistva i parametry obobschennykh kodov Bouza–Choudkhuri–Khokvingema”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 56(2) (2020), 157–165 | DOI | MR

[18] V. A. Lipnitskii, “Sovremennaya prikladnaya algebra. Matematicheskie osnovy zaschity informatsii ot pomekh i nesanktsionirovannogo dostupa”, Minsk: BGUIR, 2005, 88

[19] I. M. Vinogradov, “Osnovy teorii chisel. 8-e izdanie, ispravlennoe”, Moskva: Nauka, 1972, 167 | MR