Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_2_a10, author = {I. I. Kosik and A. M. Nedzvedz and R. M. Karapetsian}, title = {Combined algorithm for bone age determination based on hand x-rays analysis}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {105--114}, publisher = {mathdoc}, volume = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a10/} }
TY - JOUR AU - I. I. Kosik AU - A. M. Nedzvedz AU - R. M. Karapetsian TI - Combined algorithm for bone age determination based on hand x-rays analysis JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 105 EP - 114 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a10/ LA - ru ID - BGUMI_2020_2_a10 ER -
%0 Journal Article %A I. I. Kosik %A A. M. Nedzvedz %A R. M. Karapetsian %T Combined algorithm for bone age determination based on hand x-rays analysis %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 105-114 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a10/ %G ru %F BGUMI_2020_2_a10
I. I. Kosik; A. M. Nedzvedz; R. M. Karapetsian. Combined algorithm for bone age determination based on hand x-rays analysis. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 105-114. http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a10/
[1] E. Baykal, H. Dogan, M. E. Ercin, S. Ersoz, M. Ekinci, “Transfer learning with pre-trained deep convolutional neural networks for serous cell classification”, Multimedia Tools and Applications, 79(21–22) (2020), 15593–15611 | DOI
[2] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, “ImageNet: a large-scale hierarchical image database”, IEEE conference on computer vision and pattern recognition (Miami, Florida, USA). Institute of Electrical and Electronics Engineers, 2009, 248–255 | DOI
[3] A. Dzhulli, S. Pal, “Biblioteka Keras – instrument glubokogo obucheniya: realizatsiya neironnykh setei s pomoschyu bibliotek Theano i TensorFlow”, Moskva: DMK Press, 2017, 294
[4] F. Chollet, “Xception: deep learning with depthwise separable convolutions”, IEEE conference on computer vision and pattern recognition (CVPR) (Honolulu, Hawaii, USA). Institute of Electrical and Electronics Engineers, 2017, 1800–1807 | DOI
[5] G. Huang, Z. Liu, Der. Van, K. Q. Weinberger, “Densely connected convolutional networks”, IEEE conference on computer vision and pattern recognition (CVPR) (Honolulu, Hawaii, USA). Institute of Electrical and Electronics Engineers, 2017, 2261–2269 | DOI
[6] A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks”, Artificial Intelligence Review, 2020, 1–70 | DOI | Zbl
[7] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, “Feature pyramid networks for object detection”, IEEE conference on computer vision and pattern recognition (CVPR) (Honolulu, Hawaii, USA). Institute of Electrical and Electronics Engineers, 2017, 936–944 | DOI
[8] “Machine learning: concepts, methodologies, tools and applications”, Hershey: Information Science Reference, 2011, 2141
[9] M. I. Jordan, R. A. Jacobs, “Hierarchical mixtures of experts and the EM algorithm”, Neural Computation, 6(2) (1994), 181–214 | DOI
[10] D. H. Wolpert, “Stacked generalization”, Neural Networks, 5(2) (1992), 241–259 | DOI | MR
[11] E. Menahem, L. Rokach, Y. Elovici, “Troika – an improved stacking schema for classification tasks”, Information Sciences, 179(24) (2009), 4097–4122 | DOI
[12] A. K. Seewald, “How to make stacking better and faster while also taking care of an unknown weakness”, Proceedings of the 19?th International conference on machine learning, 2002, 554–561, San Francisco: Morgan Kaufmann Publishers