On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 6-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to construct an integral rational Fourier operator based on the system of Chebyshev – Markov rational functions and to study its approximation properties on classes of Markov functions. In the introduction the main results of well-known works on approximations of Markov functions are present. Rational approximation of such functions is a well-known classical problem. It was studied by A. A. Gonchar, T. Ganelius, J.-E. Andersson, A. A. Pekarskii, G. Stahl and other authors. In the main part an integral operator of the Fourier – Chebyshev type with respect to the rational Chebyshev – Markov functions, which is a rational function of order no higher than $n$ is introduced, and approximation of Markov functions is studied. If the measure $\mu$ satisfies the following conditions: $supp\mu = [1, a], a > 1, d\mu(t) = \phi(t) dt$ and $\phi(t)\asymp (t-1)^{\alpha}$ on $[1, a]$ , the estimates of pointwise and uniform approximation and the asymptotic expression of the majorant of uniform approximation are established. In the case of a fixed number of geometrically distinct poles in the extended complex plane, values of optimal parameters that provide the highest rate of decreasing of this majorant are found, as well as asymptotically accurate estimates of the best uniform approximation by this method in the case of an even number of geometrically distinct poles of the approximating function. In the final part we present asymptotic estimates of approximation of some elementary functions, which can be presented by Markov functions.
Mots-clés : Markov function; integral rational operator of Fourier type; Chebyshev – Markov rational function; majorant of uniform approximation; asymptotic estimate; best approximation; exact constant.
@article{BGUMI_2020_2_a0,
     author = {P. G. Potseiko and Y. A. Rovba and K. A. Smotritskii},
     title = {On one rational integral operator of {Fourier} {\textendash} {Chebyshev} type and approximation of {Markov} functions},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--27},
     publisher = {mathdoc},
     volume = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a0/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - Y. A. Rovba
AU  - K. A. Smotritskii
TI  - On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 6
EP  - 27
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a0/
LA  - en
ID  - BGUMI_2020_2_a0
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A Y. A. Rovba
%A K. A. Smotritskii
%T On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 6-27
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a0/
%G en
%F BGUMI_2020_2_a0
P. G. Potseiko; Y. A. Rovba; K. A. Smotritskii. On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 6-27. http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a0/

[1] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matematicheskii sbornik, 105(2) (1978), 147–163 | Zbl

[2] T. Ganelius, “Orthogonal polynomials and rational approximation of holomorphic functions”, Studies in Pure Mathematics, 1978, 237–243, Basel: Birkhauser | DOI | MR

[3] J. E. Andersson, “Best rational approximation to Markov functions”, Journal of Approximation Theory, 76(2) (1994), 219–232 | DOI | MR | Zbl

[4] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7(2) (1995), 121–132 | Zbl

[5] D. Braess, “Rational approximation of Stieltjes functions by the Caratheodory – Fejer method”, Constructive Approximation, 3(1) (1987), 43–50 | DOI | MR | Zbl

[6] L. Baratchart, H. Stahl, F. Wielonsky, “Asymptotic error estimates for L2 best rational approximants to Markov functions”, Journal of Approximation Theory, 108(1) (2001), 53–96 | DOI | MR | Zbl

[7] V. A. Prokhorov, “On rational approximation of Markov functions on finite sets”, Journal of Approximation Theory, 191 (2015), 94–117 | DOI | MR | Zbl

[8] N. S. Vyacheslavov, E. P. Mochalina, “Rational approximations of functions of Markov – Stieltjes type in Hardy spaces Hp, 0 p = Infinite”, Moscow University Mathematics Bulletin, 63(4) (2008), 125–134 | DOI | MR | Zbl

[9] A. A. Pekarskii, E. A. Rovba, “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matematicheskie zametki, 65(3) (1999), 362–368 | DOI | Zbl

[10] S. Takenaka, “On the orthogonal functions and a new formula of interpolations”, Japanese Journal of Mathematics, 2 (1925), 129–145 | DOI

[11] F. Malmquist, “Sur la determination d’une classe de fonctions analytiques par leurs valeurs dans un ensemble donne de points”, Comptes Rendus du Sixtieme Congres des mathematiciens scandinaves, 1926, 253–259, Copenhagen

[12] M. M. Dzhrbashyan, A. A. Kitbalyan, “Ob odnom obobschenii polinomov Chebysheva”, Doklady Akademii nauk Armyanskoi SSR, 38(5) (1964), 263–270 | MR | Zbl

[13] K. N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matematicheskii sbornik, 86(2) (1971), 314–324 | Zbl

[14] K. N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sibirskii matematicheskii zhurnal, 25(2) (1984), 151–160 | Zbl

[15] E. A. Rovba, E. G. Mikulich, “Constants in rational approximation of Markov – Stieltjes functions with fixed number of poles”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly, Fizika (Matematyka), Іnfarmatyka, vylichalnaya tekhnika i kiravanne | Zbl

[16] M. A. Evgrafov, “Asimptoticheskie otsenki i tselye funktsii”, Moskva: Nauka, 1979, 320 | MR | Zbl

[17] M. V. Fedoryuk, “Asimptotika: integraly i ryady”, Moskva: Nauka, 1987, 544 | MR | Zbl

[18] P. G. Potseiko, E. A. Rovba, “Summy Feiera ratsionalnogo ryada Fure – Chebysheva i approksimatsii funktsii |x| (v step. s)”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2019), 18–34 | DOI | MR | Zbl

[19] A. A. Markov, “Izbrannye trudy”, Moskva: Gostekhizdat, 1948, 412 | MR | Zbl

[20] P. K. Suetin, “Klassicheskie ortogonalnye mnogochleny”, Moskva: Fizmatlit, 2005, 480

[21] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya AN ASSR. Seriya fiziko-matematicheskikh nauk, 9(7) (1956), 3–28

[22] E. A. Rovba, “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Doklady AN BSSR, 23(11) (1979), 968–971 | MR | Zbl

[23] E. A. Rovba, E. G. Mikulich, “Konstanty v priblizhenii x ratsionalnymi interpolyatsionnymi protsessami”, Doklady Natsionalnoi akademii nauk Belarusi, 53(6) (2009), 11–15 | MR | Zbl

[24] E. G. Mikulich, “Tochnye otsenki ravnomernykh priblizhenii funktsii |sin x| chastnymi summami ryadov Fure po ratsionalnym funktsiyam”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2011), 84–90 | MR | Zbl

[25] S. N. Bernstein, “Sur la valeur asymptotique de la meilleure approximation des fonctions analytiques, admettant des singularites donnese”, Bulletin de l’Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 2 (1913), 76–90

[26] S. N. Bernshtein, “Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi”, Moskva: Glavnaya redaktsiya obschetekhnicheskoi literatury, 1937, 200

[27] E. A. Rovba, P. G. Potseiko, “Approksimatsiya funktsii |x| (v step. s) na otrezke [-1,1], chastichnymi summami ratsionalnogo ryada Fure – Chebysheva”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 9(3) (2019), 16–28

[28] Y. Rouba, P. Patseika, K. Smatrytski, “On a system of rational Chebyshev – Markov fractions”, Analysis Mathematica, 44(1) (2018), 115–140 | DOI | MR | Zbl

[29] E. A. Rovba, “O priblizhenii funktsii |sin x| ratsionalnymi ryadami Fure”, Matematicheskie zametki, 46(2) (1989), 52–59 | DOI | Zbl