Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_1_a5, author = {V. V. Korolevich}, title = {Solution of nonaxisymmetric stationary problem of heat conductivity for polar-orthotropic ring plate of variable thickness with account of heat transfer with external environment}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {47--58}, publisher = {mathdoc}, volume = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a5/} }
TY - JOUR AU - V. V. Korolevich TI - Solution of nonaxisymmetric stationary problem of heat conductivity for polar-orthotropic ring plate of variable thickness with account of heat transfer with external environment JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 47 EP - 58 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a5/ LA - ru ID - BGUMI_2020_1_a5 ER -
%0 Journal Article %A V. V. Korolevich %T Solution of nonaxisymmetric stationary problem of heat conductivity for polar-orthotropic ring plate of variable thickness with account of heat transfer with external environment %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 47-58 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a5/ %G ru %F BGUMI_2020_1_a5
V. V. Korolevich. Solution of nonaxisymmetric stationary problem of heat conductivity for polar-orthotropic ring plate of variable thickness with account of heat transfer with external environment. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 47-58. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a5/
[1] V. V. Korolevich, D. G. Medvedev, “Reshenie neosesimmetrichnoi statsionarnoi zadachi teploprovodnosti dlya polyarno-ortotropnoi koltsevoi plastiny peremennoi tolschiny s teploizolirovannymi osnovaniyami”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2018), 77–87 | MR | Zbl
[2] A. I. Uzdalev, “Nekotorye zadachi termouprugosti anizotropnogo tela”, Saratov: Izdatelstvo Saratovskogo gosudarstvennogo universiteta, 1967, 168
[3] A. I. Uzdalev, E. N. Bryukhanova, “Uravnenie teploprovodnosti dlya plastin peremennoi tolschiny s neodnorodnymi teplofizicheskimi svoistvami”, Zadachi prikladnoi teorii uprugosti, 1985, 3–7, Saratov: Saratovskii politekhnicheskii institut
[4] V. V. Korolevich, “Statsionarnye temperaturnye polya v anizotropnykh koltsevykh plastinakh peremennoi tolschiny s uchetom teploobmena s vneshnei sredoi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2018), 58–66 | MR | Zbl
[5] I. N. Bronshtein, K. A. Semendyaev, “Spravochnik po matematike dlya inzhenerov i uchaschikhsya VTUZov”, Moskva: Nauka, 1981, 721
[6] E. Kamke, “Spravochnik po obyknovennym differentsialnym uravneniyam”, Moskva: Nauka, 1976, 576
[7] M. L. Krasnov, A. I. Kiselev, G. I. Makarenko, “Integralnye uravneniya: zadachi i primery s podrobnymi resheniyami”, Moskva: KomKniga, 2007, 192
[8] A. F. Verlan, V. S. Sizikov, “Integralnye uravneniya: metody, algoritmy, programmy”, Kiev: Naukova dumka, 1986, 543 | MR
[9] V. V. Korolevich, D. G. Medvedev, “Reshenie osesimmetrichnoi ploskoi zadachi termouprugosti dlya vraschayuschegosya v teplovom pole polyarno-ortotropnogo diska peremennoi tolschiny metodom integralnogo uravneniya Volterry vtorogo roda”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2017), 47–52 | MR
[10] V. V. Korolevich, D. G. Medvedev, “Raschet osesimmetrichnogo termosilovogo izgiba vraschayuschegosya v teplovom pole polyarnoortotropnogo diska peremennoi tolschiny metodom integralnogo uravneniya Volterry vtorogo roda”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2017), 44–51 | MR