Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 38-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unsymmetrical buckling of nonuniform circular plates with elastically restrained edge and subjected to normal pressure is studied in this paper. The unsymmetric part of the solution is sought in terms of multiples of the harmonics of the angular coordinate. A numerical method is employed to obtain the lowest load value, which leads to the appearance of waves in the circumferential direction. The effect of material heterogeneity and boundary on the buckling load is examined. It is shown that if the outer edge of a plate is elastically restrained against radial deflection, the buckling load for unsymmetrical buckling is larger than for a plate with a movable edge. The elasticity modulus decrease away from the center of a plate leads to sufficient lowering of the buckling pressure if the outer edge can move freely in the radial direction.
Keywords: circular plate; buckling; heterogeneity.
@article{BGUMI_2020_1_a4,
     author = {S. M. Bauer and E. B. Voronkova},
     title = {Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/}
}
TY  - JOUR
AU  - S. M. Bauer
AU  - E. B. Voronkova
TI  - Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 38
EP  - 46
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/
LA  - ru
ID  - BGUMI_2020_1_a4
ER  - 
%0 Journal Article
%A S. M. Bauer
%A E. B. Voronkova
%T Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 38-46
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/
%G ru
%F BGUMI_2020_1_a4
S. M. Bauer; E. B. Voronkova. Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 38-46. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/

[1] J. Adachi, “Stresses and buckling in thin domes under internal pressure”, Watertown: US Army Materials and Mechanics Research Center, 1968

[2] D. Bushnell, “Buckling of shells-pitfall for designers”, AIAA Journal, 19(9) (2015), 1183–1226 | DOI

[3] D. Yu. Panov, V. I. Feodosev, “O ravnovesii i potere ustoichivosti pologikh obolochek pri bolshikh progibakh”, Prikladnaya matematika i mekhanika, 12 (1948), 389–406

[4] N. C. Huang, “Unsymmetrical buckling of shallow spherical shells”, Journal of Applied Mechanics, 31(3) (1964), 447–457 | DOI | MR

[5] V. I. Feodos’ev, “On a method of solution of the nonlinear problems of stability of deformable systems”, Journal of Applied Mathematics and Mechanics, 27(2) (1963), 392–404 | DOI | MR | Zbl

[6] N. F. Morozov, “K voprosu o suschestvovanii nesimmetrichnogo resheniya v zadache o bolshikh progibakh krugloi plastinki, zagruzhennoi simmetrichnoi nagruzkoi”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2 (1961), 126–129 | Zbl

[7] W. Piechocki, “On the nonlinear theory of thin elastic spherical shells: nonlinear partial differential equations solutions in theory of thin elastic spherical shells subjected to temperature fields and external loading”, Archives of Mechanics, 21(1) (1969), 81–102 | MR

[8] L. S. Cheo, E. L. Reiss, “Unsymmetric wrinkling of circular plates”, The Quarterly Journal of Mechanics and Applied Mathematics, 31(1) (1973), 75–91 | DOI | Zbl

[9] C. D. Coman, “Asymmetric bifurcations in a pressurised circular thin plate under initial tension”, Mechanics Research Communications, 47 (2013), 11–17 | DOI

[10] C. D. Coman, A. P. Bassom, “Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap”, International Journal of Non-Linear Mechanics, 81 (2016), 8–18 | DOI

[11] R. V. Goldshtein, A. L. Popov, V. M. Kozintsev, D. A. Chelyubeev, “Neosesimmetrichnaya poterya ustoichivosti pri osesimmetrichnom nagreve krugloi plastiny”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta; Mekhanika, 2 (2016), 45–53 | DOI

[12] S. M. Bauer, E. B. Voronkova, “Models of shells and plates in the problems of ophthalmology”, Vestnik St Petersburg University. Mathematics, 47(3) (2014), 123–139 | DOI | MR | Zbl

[13] S. M. Bauer, E. B. Voronkova, “Unsymmetrical wrinkling of nonuniform annular plates and spherical caps under internal pressure”, Recent developments in the theory of shells. Advanced structured materials, 110 (2019), 79–89, Cham: Springer | DOI | MR | Zbl