Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_1_a4, author = {S. M. Bauer and E. B. Voronkova}, title = {Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {38--46}, publisher = {mathdoc}, volume = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/} }
TY - JOUR AU - S. M. Bauer AU - E. B. Voronkova TI - Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 38 EP - 46 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/ LA - ru ID - BGUMI_2020_1_a4 ER -
%0 Journal Article %A S. M. Bauer %A E. B. Voronkova %T Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 38-46 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/ %G ru %F BGUMI_2020_1_a4
S. M. Bauer; E. B. Voronkova. Influence of boundary constraints on the appearance of asymmetrical equilibrium states in circular plates under normal pressure. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 38-46. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a4/
[1] J. Adachi, “Stresses and buckling in thin domes under internal pressure”, Watertown: US Army Materials and Mechanics Research Center, 1968
[2] D. Bushnell, “Buckling of shells-pitfall for designers”, AIAA Journal, 19(9) (2015), 1183–1226 | DOI
[3] D. Yu. Panov, V. I. Feodosev, “O ravnovesii i potere ustoichivosti pologikh obolochek pri bolshikh progibakh”, Prikladnaya matematika i mekhanika, 12 (1948), 389–406
[4] N. C. Huang, “Unsymmetrical buckling of shallow spherical shells”, Journal of Applied Mechanics, 31(3) (1964), 447–457 | DOI | MR
[5] V. I. Feodos’ev, “On a method of solution of the nonlinear problems of stability of deformable systems”, Journal of Applied Mathematics and Mechanics, 27(2) (1963), 392–404 | DOI | MR | Zbl
[6] N. F. Morozov, “K voprosu o suschestvovanii nesimmetrichnogo resheniya v zadache o bolshikh progibakh krugloi plastinki, zagruzhennoi simmetrichnoi nagruzkoi”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2 (1961), 126–129 | Zbl
[7] W. Piechocki, “On the nonlinear theory of thin elastic spherical shells: nonlinear partial differential equations solutions in theory of thin elastic spherical shells subjected to temperature fields and external loading”, Archives of Mechanics, 21(1) (1969), 81–102 | MR
[8] L. S. Cheo, E. L. Reiss, “Unsymmetric wrinkling of circular plates”, The Quarterly Journal of Mechanics and Applied Mathematics, 31(1) (1973), 75–91 | DOI | Zbl
[9] C. D. Coman, “Asymmetric bifurcations in a pressurised circular thin plate under initial tension”, Mechanics Research Communications, 47 (2013), 11–17 | DOI
[10] C. D. Coman, A. P. Bassom, “Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap”, International Journal of Non-Linear Mechanics, 81 (2016), 8–18 | DOI
[11] R. V. Goldshtein, A. L. Popov, V. M. Kozintsev, D. A. Chelyubeev, “Neosesimmetrichnaya poterya ustoichivosti pri osesimmetrichnom nagreve krugloi plastiny”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta; Mekhanika, 2 (2016), 45–53 | DOI
[12] S. M. Bauer, E. B. Voronkova, “Models of shells and plates in the problems of ophthalmology”, Vestnik St Petersburg University. Mathematics, 47(3) (2014), 123–139 | DOI | MR | Zbl
[13] S. M. Bauer, E. B. Voronkova, “Unsymmetrical wrinkling of nonuniform annular plates and spherical caps under internal pressure”, Recent developments in the theory of shells. Advanced structured materials, 110 (2019), 79–89, Cham: Springer | DOI | MR | Zbl