On the continuity of functors of the type $C(X, Y)$
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the category $\mathcal{P}$, the objects of which are pairs of topological spaces $(X, Y)$. Each such pair $(X, Y)$ is assigned the space of continuous maps $C_{\tau}(X, Y)$ with some topology $\tau$. By imposing some restrictions on objects and morphisms of category $\mathcal{P}$, we define a subcategory $\mathcal{K} \subset \mathcal{P}$, for which the above map is a functor from $\mathcal{K}$ to the category Top of topological spaces and continuous maps. The following question is investigated. What are the additional conditions on $\mathcal{K}$, under which the above functor is continuous? Along the way the problem of finding the limit of the inverse spectrum in the category $\mathcal{P}$ is solved. We show, that it reduces to finding the limits of the corresponding direct spectrum and inverse spectrum in the category Top. Point convergence topology, compact-open topology and graph topology are considered as the topology $\tau$.
Keywords: function space; functor $C(X, Y)$; continuous functor; inverse spectrum; direct spectrum.
@article{BGUMI_2020_1_a2,
     author = {H. O. Kukrak and V. L. Timokhovich},
     title = {On the continuity of functors of the type $C(X, Y)$},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a2/}
}
TY  - JOUR
AU  - H. O. Kukrak
AU  - V. L. Timokhovich
TI  - On the continuity of functors of the type $C(X, Y)$
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 22
EP  - 29
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a2/
LA  - ru
ID  - BGUMI_2020_1_a2
ER  - 
%0 Journal Article
%A H. O. Kukrak
%A V. L. Timokhovich
%T On the continuity of functors of the type $C(X, Y)$
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 22-29
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a2/
%G ru
%F BGUMI_2020_1_a2
H. O. Kukrak; V. L. Timokhovich. On the continuity of functors of the type $C(X, Y)$. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 22-29. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a2/

[1] G. O. Kukrak, V. L. Timokhovich, D. S. Frolova, “Nekotorye topologicheskie svoistva funktora C(X, Y)”, Trudy Instituta matematiki NAN Belarusi, 26(1) (2018), 71–78

[2] G. O. Kukrak, V. L. Timokhovich, “Nekotorye topologicheskie svoistva prostranstva otobrazhenii”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2010), 144–149 | MR | Zbl

[3] V. L. Timokhovich, D. S. Frolova, “Ob infimalnoi topologii prostranstva otobrazhenii”, Vestnik BGU. Fizika. Matematika. Informatika, 2 (2011), 136–140 | MR | Zbl

[4] V. L. Timokhovich, D. S. Frolova, “Infimalnaya topologiya prostranstva otobrazhenii i otobrazhenie vychisleniya”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2012), 68–72 | Zbl

[5] V. L. Timokhovich, D. S. Frolova, “Topologii ravnomernoi skhodimosti. Sobstvennost (v smysle Arensa – Dugundzhi) i sekventsialnaya sobstvennost”, Izvestiya vuzov. Matematika, 9 (2013), 45–58 | MR | Zbl

[6] R. Engelking, “Obschaya topologiya”, Moskva: Mir, 1986, 752 | MR

[7] P. Bacon, “The compactness of countably compact spaces”, Pacific Journal of Mathematics, 32(3) (1970), 587–592 | DOI | MR | Zbl

[8] S. Naimpally, “Graph topology for function spaces”, Transactions of the American Mathematical Society, 123 (1966), 267–272 | DOI | MR | Zbl

[9] V. V. Fedorchuk, V. V. Filippov, “Obschaya topologiya. Osnovnye konstruktsii”, Moskva: Fizmatlit, 2006, 336

[10] I. Bukur, A. Delyanu, “Vvedenie v teoriyu kategorii i funktorov”, Moskva: Mir, 1972, 259 | MR

[11] R. A. Aleksandryan, E. A. Mirzakhanyan, “Obschaya topologiya”, Moskva: Vysshaya shkola, 1979, 336 | Zbl