@article{BGUMI_2020_1_a0,
author = {S. A. Bondarev},
title = {Inclusion of {Hajiasz} {\textendash} {Sobolev} class $M_p^{\alpha}(X)$ into the space of continuous functions in the critical case},
journal = {Journal of the Belarusian State University. Mathematics and Informatics},
pages = {6--12},
year = {2020},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a0/}
}
TY - JOUR
AU - S. A. Bondarev
TI - Inclusion of Hajiasz – Sobolev class $M_p^{\alpha}(X)$ into the space of continuous functions in the critical case
JO - Journal of the Belarusian State University. Mathematics and Informatics
PY - 2020
SP - 6
EP - 12
VL - 1
UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a0/
LA - en
ID - BGUMI_2020_1_a0
ER -
%0 Journal Article
%A S. A. Bondarev
%T Inclusion of Hajiasz – Sobolev class $M_p^{\alpha}(X)$ into the space of continuous functions in the critical case
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 6-12
%V 1
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a0/
%G en
%F BGUMI_2020_1_a0
S. A. Bondarev. Inclusion of Hajiasz – Sobolev class $M_p^{\alpha}(X)$ into the space of continuous functions in the critical case. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 6-12. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a0/
[1] J. Heinonen, “Nonsmooth calculus”, Bulletin of the American mathematical society, 44(2) (2007), 163–232 | DOI | MR | Zbl
[2] P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Analysis, 5(4) (1996), 403–415 | DOI | MR | Zbl
[3] D. Yang, “New characterization of Hajlasz – Sobolev spaces on metric spaces”, Science in China. Mathematics, 46(5) (2003), 675–689 | DOI | MR | Zbl
[4] X. Zhou, “Sobolev functions in the critical case are uniformly continuous in s-Ahlfors regular metric spaces when s = 1”, Proceedings of the American Mathematical Society, 145 (2017), 267–272 | DOI | MR | Zbl
[5] S. A. Bondarev, V. G. Krotov, “Fine properties of functions from Hajlasz – Sobolev classes M (in exp. p, with index alpha), p > 0. I Lebesgue points”, Journal of Contemporary Mathematical Analysis, 51(6) (2016), 282–295 | DOI | MR | Zbl
[6] S. A. Bondarev, “Tochki Lebega dlya funktsii iz obobschennykh klassov Soboleva M (v step. p, s ind. alpha)(X) v kriticheskom sluchae”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2018), 4–11 | Zbl
[7] P. Gorka, A. Slabuszewski, “A discontinuous Sobolev function exists”, Proceedings of the American Mathematical Society, 147(2) (2019), 637–639 | DOI | MR | Zbl
[8] I. Stein, “Singulyarnye integraly i differentsialnye svoistva funktsii”, Moskva: Mir, 1973, 342
[9] J. Heinonen, “Lectures on analysis on metric spaces”, New York: Springer – Verlag, 2001, 141 | DOI | MR