Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_3_a7, author = {A. B. Belyi and S. L. Sobolevskii and A. N. Kourbatski and C. Ratti}, title = {Improved upper bounds in clique partitioning problem}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {93--104}, publisher = {mathdoc}, volume = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a7/} }
TY - JOUR AU - A. B. Belyi AU - S. L. Sobolevskii AU - A. N. Kourbatski AU - C. Ratti TI - Improved upper bounds in clique partitioning problem JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 93 EP - 104 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a7/ LA - ru ID - BGUMI_2019_3_a7 ER -
%0 Journal Article %A A. B. Belyi %A S. L. Sobolevskii %A A. N. Kourbatski %A C. Ratti %T Improved upper bounds in clique partitioning problem %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 93-104 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a7/ %G ru %F BGUMI_2019_3_a7
A. B. Belyi; S. L. Sobolevskii; A. N. Kourbatski; C. Ratti. Improved upper bounds in clique partitioning problem. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 93-104. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a7/
[1] M. Grotschel, Y. Wakabayashi, “A cutting plane algorithm for a clustering problem”, Mathematical Programming, 45(1–3) (1989), 59–96 | DOI | MR | Zbl
[2] S. Fortunato, “Community detection in graphs”, Physics reports, 486(3–5) (2010), 75–174 | DOI | MR
[3] A. Belyi, I. Bojic, S. Sobolevsky, I. Sitko, B. Hawelka, L. Rudikova, “Global multi-layer network of human mobility”, International Journal of Geographical Information Science, 31(7) (2017), 1381–1402 | DOI
[4] A. Belyi, I. Bojic, S. Sobolevsky, L. Rudikova, A. Kurbatski, C. Ratti, “Community structure of the world revealed by Flickr data”, Tekhnologii informatizatsii i upravleniya. TIM-2016. Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Belarus), 2016, 1–9, Grodno: GrGU | MR
[5] S. Sobolevsky, A. Belyi, C. Ratti, “Optimality of community structure in complex networks”, 2017, 17, arXiv: http://dx.doi.org/https://arxiv.org/abs/1712.05110
[6] M. E. Newman, M. Girvan, “Finding and evaluating community structure in networks”, Physical Review E, 69(2) (2004), 26–113 | DOI | MR
[7] M. E. Newman, “Modularity and community structure in networks”, Proceedings of the National Academy of Sciences of the United States of America, 103(23) (2006), 8577–8582 | DOI
[8] M. Rosvall, C. T. Bergstrom, “Maps of random walks on complex networks reveal community structure”, Sciences of the United States of America, 105(4) (2008), 1118–1123 | DOI
[9] Y. Wakabayashi, “Aggregation of binary relations: algorithmic and polyhedral investigations”, Augsburg: University of Augsburg, 1986, 191 | Zbl
[10] Amorim. De, J. P. Barthelemy, C. C. Ribeiro, “Clustering and clique partitioning: simulated annealing and tabu search approaches”, Journal of Classification, 9(1) (1992), 17–41 | DOI | MR
[11] ?. U. Dorndorf, E. Pesch, “Fast clustering algorithms”, ORSA Journal on Computing, 6(2) (1994), 141–153 | DOI | Zbl
[12] I. Charon, O. Hudry, “Noising methods for a clique partitioning problem”, Discrete Applied Mathematics, 154(5) (2006), 754–769 | DOI | MR | Zbl
[13] Y. Zhou, J. K. Hao, A. Goeffon, “A three-phased local search approach for the clique partitioning problem”, Journal of Combinatorial Optimization, 32(2) (2016), 469–491 | DOI | MR | Zbl
[14] J. Brimberg, S. Janicijevic, N. Mladenovic, D. Urosevic, “Solving the clique partitioning problem as a maximally diverse grouping problem”, Optimization Letters, 11(6) (2017), 1123–1135 | DOI | MR | Zbl
[15] S. Sobolevsky, R. Campari, A. Belyi, C. Ratti, “General optimization technique for high-quality community detection in complex networks”, Physical Review E, 90(1) (2014), 012811 | DOI
[16] M. Oosten, JHGC. Rutten, FCR. Spieksma, “The clique partitioning problem: facets and patching facets”, Networks: An International Journal, 38(4) (2001), 209–226 | DOI | MR | Zbl
[17] F. Jaehn, E. Pesch, “New bounds and constraint propagation techniques for the clique partitioning problem”, Discrete Applied Mathematics, 161(13–14) (2013), 2025–2037 | DOI | MR | Zbl
[18] U. Dorndorf, F. Jaehn, E. Pesch, “Modelling robust flight-gate scheduling as a clique partitioning problem”, Transportation Science, 42(3) (2008), 292–301 | DOI
[19] H. Wang, B. Alidaee, F. Glover, G. Kochenberger, “Solving group technology problems via clique partitioning”, International Journal of Flexible Manufacturing Systems, 18(2) (2006), 77–97 | DOI | MR | Zbl
[20] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, L. Liberti, “Column generation algorithms for exact modularity maximization in networks”, Physical Review E, 82(4) (2010), 046112 | DOI