Generalized blocked Floyd – Warshall algorithm
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 84-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the most commonly used on practice all-pairs shortest paths algorithms on weighted graphs is Floyd – Warshall algorithm. Blocked version serves as a basis for obtaining effective parallel algorithms to be implemented on multicore central processing units, on computers with distributed memory, on graphics processing units (GPU). Increasing computation granularity in blocked versions of algorithm leads to a more efficient usage of caches and more efficient organization of parallel computations. In this paper we introduce generalization of blocked Floyd – Warshall algorithm. Computing blocks execution order was reorganized in such a way that array elements which participate in communication operations, both reading and writing, are pushed out of fast-access memory less often. This means that in GPU implementation slow global memory is used less often, compared with the original blocked algorithm.
Keywords: parallel algorithms; shortest paths; graphs; Floyd – Warshall algorithm; block algorithm; GPU.
@article{BGUMI_2019_3_a6,
     author = {N. A. Likhoded and D. S. Sipeyko},
     title = {Generalized blocked {Floyd} {\textendash} {Warshall} algorithm},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {84--92},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a6/}
}
TY  - JOUR
AU  - N. A. Likhoded
AU  - D. S. Sipeyko
TI  - Generalized blocked Floyd – Warshall algorithm
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 84
EP  - 92
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a6/
LA  - ru
ID  - BGUMI_2019_3_a6
ER  - 
%0 Journal Article
%A N. A. Likhoded
%A D. S. Sipeyko
%T Generalized blocked Floyd – Warshall algorithm
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 84-92
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a6/
%G ru
%F BGUMI_2019_3_a6
N. A. Likhoded; D. S. Sipeyko. Generalized blocked Floyd – Warshall algorithm. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 84-92. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a6/

[1] G. Venkataraman, S. Sahni, S. Mukhopadhyaya, “A blocked all-pairs shortest-paths algorithm”, Journal of Experimental Algorithmics, 8 (2003), 857–874 | DOI | MR

[2] J. Park, M. Penner, V. K. Prasanna, “Optimizing graph algorithms for improved cache performance”, IEEE Transactions on Parallel and Distributed Systems, 15(9) (2004), 769–782 | DOI

[3] T. Srinivasan, R. Balakrishnan, S. A. Gangadharan, V. Hayawardh, “A scalable parallelization of all-pairs shortest path algorithm for a high performance cluster environment”, Proceedings of the 13th International Conference on Parallel and Distributed Systems (Hsinchu, Taiwan), 2007, 1–8, Washington: IEEE Computer Society | DOI

[4] B. D. Lund, J. W. Smith, “A multi-stage CUDA kernel for Floyd – Warshall”, 2010, arXiv: http://dx.doi.org/https://arxiv.org/abs/1001.4108

[5] R. T. Mullapudi, U. Bondhugula, “Tiling for dynamic scheduling”, IMPACT 2014. Proceedings of the 4th International Workshop on Polyhedral Compilation Techniques (Vienna, Austria), 2014

[6] A. A. Prikhozhii, O. N. Karasik, “Raznorodnyi blochnyi algoritm poiska kratchaishikh putei mezhdu vsemi parami vershin grafa”, Sistemnyi analiz i prikladnaya informatika, 3 (2017), 68–75 | DOI

[7] VlV. Voevodin, VadV. Voevodin, “Spasitelnaya lokalnost superkompyuterov”, Otkrytye sistemy. SUBD, 9 (2013), 12–15

[8] A. Buluc, J. R. Gilberta, C. Budak, “Solving path problems on the GPU”, Parallel Computing, 36(5–6) (2010), 241–253 | DOI | Zbl

[9] N. A. Likhoded, M. A. Poleschuk, “Usloviya privatizatsii elementov massiva potokami vychislenii”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2018), 59–67 | Zbl

[10] P. Harish, P. Narayanan, “Accelerating large graph algorithms on the GPU using CUDA”, High Performance Computing – HiPC 2007. Proceedings of the 14th International Conference (Goa, India), 2007, 197–208, Berlin: Springer-Verlag | DOI

[11] G. J. Katz, J. T. Kider, “All-pairs shortest-paths for large graphs on the GPU”, Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware (Sarajevo, Bosnia and Herzegovina), 2008, 47–55, Aire-la-Ville: Eurographics Association