Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_3_a5, author = {V. K. Polevikov}, title = {A monotone finite-difference high order accuracy scheme for the $2D$ convection {\textendash} diffusion equations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {71--83}, publisher = {mathdoc}, volume = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/} }
TY - JOUR AU - V. K. Polevikov TI - A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 71 EP - 83 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/ LA - en ID - BGUMI_2019_3_a5 ER -
%0 Journal Article %A V. K. Polevikov %T A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 71-83 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/ %G en %F BGUMI_2019_3_a5
V. K. Polevikov. A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 71-83. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/
[1] S. Beresnev, V. Polevikov, L. Tobiska, “Numerical study of the influence of diffusion of magnetic particles on equilibrium shapes of a free magnetic fluid surface”, Communications in Nonlinear Science and Simulation, 14(4) (2009), 1403–1409 | DOI | MR | Zbl
[2] V. Polevikov, L. Tobiska, “Influence of diffusion of magnetic particles on stability of a static magnetic fluid seal under the action of external pressure drop”, Communications in Nonlinear Science and Numerical Simulation, 16(10) (2011), 4021–4027 | DOI | MR | Zbl
[3] A. A. Samarskii, “The theory of difference schemes”, New York: Marcel Dekker, 2001, 73 | MR
[4] H-G. Roos, M. Stynes, L. Tobiska, “Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems”, 24, Berlin: Springer, 2008, 604 | DOI | MR | Zbl
[5] M. Stynes, D. Stynes, “Convection-diffusion problems: an introduction to their analysis and numerical solution”, 196, USA: American Mathematical Society, 2018, 156 | MR
[6] A. A. Samarskii, P. N. Vabischevich, “Chislennye metody resheniya zadach konvektsii-diffuzii”, Moskva: Librokom, 2009, 248
[7] S. V. Lemeshevskii, P. P. Matus, R. M. Yakubuk, “Dvukhsloinye raznostnye skhemy povyshennogo poryadka tochnosti dlya uravneniya konvektsii-diffuzii”, Doklady NAN Belarusi, 56(2) (2012), 15–18 | MR | Zbl
[8] B. Berkovski, V. Bashtovoi, “Magnetic fluids and applications handbook”, New York: Begell House, 1996, 831
[9] B. M. Berkovsky, V. F. Medvedev, M. S. Krakov, “Magnetic fluids: engineering applications”, New York: Oxford University Press, 1993, 243
[10] V. E. Fertman, “Magnitnye zhidkosti – estestvennaya konvektsiya i teploobmen”, Minsk: Nauka i tekhnika, 1978, 205
[11] V. G. Bashtovoi, B. M. Berkovsky, A. N. Vislovich, “Introduction to thermomechanics of magnetic fluids”, Washington: Hemisphere Publishing, 1988, 228
[12] B. M. Berkovskii, V. K. Polevikov, “Vychislitelnyi eksperiment v konvektsii”, Minsk: Universitetskoe, 1988, 167
[13] V. Polevikov, L. Tobiska, “On the solution of the steady-state diffusion problem for ferromagnetic particles in a magnetic fluid”, Mathematical Modeling and Analysis, 13(2) (2008), 233–240 | DOI | MR | Zbl
[14] B. M. Berkovskii, V. K. Polevikov, “Effect of the Prandtl number on the convection field and the heat transfer during natural convection”, Journal of Engineering Physics, 24(5) (1973), 598–603 | DOI
[15] G. Z. Gershuni, E. M. Zhukhovitskii, E. L. Tarunin, “Numerical investigation of convective motion in a closed cavity”, Fluid Dynamics, 1(5) (1966), 38–42 | DOI
[16] V. K. Polevikov, “Raznostnaya skhema chetvertogo poryadka tochnosti dlya rascheta funktsii vikhrya na granitse v zadachakh dinamiki zhidkosti”, Doklady Akademii nauk Belorusskoi SSR, 23(10) (1979), 872–875 | MR | Zbl
[17] V. K. Polevikov, “Application of the relaxation method to solve steady difference problems of convection”, USSR Computational Mathematics and Mathematical Physics, 21(1) (1981), 126–137 | DOI | MR
[18] A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, M. Wolfshtein, “Heat and mass transfer in recirculating flows”, London: Academic Press, 1969, 338