A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 71-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

A stable finite-difference scheme is constructed on a minimum stencil of a uniform mesh for a two-dimensional steady-state convection – diffusion equation of a general form; the scheme is theoretically studied and tested. It satisfies the maximum principle and has the fourth order of approximation. The scheme monotonicity is controlled by two regularization parameters introduced into the difference operator. The scheme is focused on solving applied convection – diffusion problems with a developed boundary layer, including gravitational convection, thermomagnetic convection, and diffusion of particles in a magnetic fluid. The scheme is tested on the well-known problem of a high-intensive gravitational convection in a horizontal channel of a square cross-section with a uniform heating from the side. A detailed comparison is performed with the monotone Samarskii scheme of the second order approximation on the sequences of square meshes with the number of partitions from 10 to 1000 on each side of the square domain and over the entire range of the Rayleigh numbers, corresponding to the laminar convection mode. A significant advantage of the fourth order scheme in the convergence rate is shown for the decreasing mesh step.
Keywords: gravitational convection; thermomagnetic convection; diffusion of particles; convection – diffusion equation; finite-difference high order approximation scheme; maximum principle; parameters of regularization.
@article{BGUMI_2019_3_a5,
     author = {V. K. Polevikov},
     title = {A monotone finite-difference high order accuracy scheme for the $2D$ convection {\textendash} diffusion equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/}
}
TY  - JOUR
AU  - V. K. Polevikov
TI  - A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 71
EP  - 83
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/
LA  - en
ID  - BGUMI_2019_3_a5
ER  - 
%0 Journal Article
%A V. K. Polevikov
%T A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 71-83
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/
%G en
%F BGUMI_2019_3_a5
V. K. Polevikov. A monotone finite-difference high order accuracy scheme for the $2D$ convection – diffusion equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 71-83. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a5/

[1] S. Beresnev, V. Polevikov, L. Tobiska, “Numerical study of the influence of diffusion of magnetic particles on equilibrium shapes of a free magnetic fluid surface”, Communications in Nonlinear Science and Simulation, 14(4) (2009), 1403–1409 | DOI | MR | Zbl

[2] V. Polevikov, L. Tobiska, “Influence of diffusion of magnetic particles on stability of a static magnetic fluid seal under the action of external pressure drop”, Communications in Nonlinear Science and Numerical Simulation, 16(10) (2011), 4021–4027 | DOI | MR | Zbl

[3] A. A. Samarskii, “The theory of difference schemes”, New York: Marcel Dekker, 2001, 73 | MR

[4] H-G. Roos, M. Stynes, L. Tobiska, “Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems”, 24, Berlin: Springer, 2008, 604 | DOI | MR | Zbl

[5] M. Stynes, D. Stynes, “Convection-diffusion problems: an introduction to their analysis and numerical solution”, 196, USA: American Mathematical Society, 2018, 156 | MR

[6] A. A. Samarskii, P. N. Vabischevich, “Chislennye metody resheniya zadach konvektsii-diffuzii”, Moskva: Librokom, 2009, 248

[7] S. V. Lemeshevskii, P. P. Matus, R. M. Yakubuk, “Dvukhsloinye raznostnye skhemy povyshennogo poryadka tochnosti dlya uravneniya konvektsii-diffuzii”, Doklady NAN Belarusi, 56(2) (2012), 15–18 | MR | Zbl

[8] B. Berkovski, V. Bashtovoi, “Magnetic fluids and applications handbook”, New York: Begell House, 1996, 831

[9] B. M. Berkovsky, V. F. Medvedev, M. S. Krakov, “Magnetic fluids: engineering applications”, New York: Oxford University Press, 1993, 243

[10] V. E. Fertman, “Magnitnye zhidkosti – estestvennaya konvektsiya i teploobmen”, Minsk: Nauka i tekhnika, 1978, 205

[11] V. G. Bashtovoi, B. M. Berkovsky, A. N. Vislovich, “Introduction to thermomechanics of magnetic fluids”, Washington: Hemisphere Publishing, 1988, 228

[12] B. M. Berkovskii, V. K. Polevikov, “Vychislitelnyi eksperiment v konvektsii”, Minsk: Universitetskoe, 1988, 167

[13] V. Polevikov, L. Tobiska, “On the solution of the steady-state diffusion problem for ferromagnetic particles in a magnetic fluid”, Mathematical Modeling and Analysis, 13(2) (2008), 233–240 | DOI | MR | Zbl

[14] B. M. Berkovskii, V. K. Polevikov, “Effect of the Prandtl number on the convection field and the heat transfer during natural convection”, Journal of Engineering Physics, 24(5) (1973), 598–603 | DOI

[15] G. Z. Gershuni, E. M. Zhukhovitskii, E. L. Tarunin, “Numerical investigation of convective motion in a closed cavity”, Fluid Dynamics, 1(5) (1966), 38–42 | DOI

[16] V. K. Polevikov, “Raznostnaya skhema chetvertogo poryadka tochnosti dlya rascheta funktsii vikhrya na granitse v zadachakh dinamiki zhidkosti”, Doklady Akademii nauk Belorusskoi SSR, 23(10) (1979), 872–875 | MR | Zbl

[17] V. K. Polevikov, “Application of the relaxation method to solve steady difference problems of convection”, USSR Computational Mathematics and Mathematical Physics, 21(1) (1981), 126–137 | DOI | MR

[18] A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, M. Wolfshtein, “Heat and mass transfer in recirculating flows”, London: Academic Press, 1969, 338