Hypersingular integro-differential equations with power factors in coefficients
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 48-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear hypersingular integro-differential equation of arbitrary order on a closed curve located on the complex plane is considered. A scheme is proposed to study this equation in the case when its coefficients have some particular structure. This scheme providers for the use of generalized Sokhotsky formulas, the solution of the Riemann boundary value problem and the solution in the class of analytical functions of linear differential equations. According to this scheme, the equations are explicitly solved, the coefficients of which contain power factors, so that along with the Riemann problem the arising differential equations are constructively solved. Solvability conditions, solution formulas, examples are given.
Keywords: integro-differential equations; hypersingular integrals; generalized Sokhotsky formulas; Riemann boundary problem; linear differential equations.
@article{BGUMI_2019_3_a3,
     author = {A. P. Shilin},
     title = {Hypersingular integro-differential equations with power factors in coefficients},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {48--56},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a3/}
}
TY  - JOUR
AU  - A. P. Shilin
TI  - Hypersingular integro-differential equations with power factors in coefficients
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 48
EP  - 56
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a3/
LA  - ru
ID  - BGUMI_2019_3_a3
ER  - 
%0 Journal Article
%A A. P. Shilin
%T Hypersingular integro-differential equations with power factors in coefficients
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 48-56
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a3/
%G ru
%F BGUMI_2019_3_a3
A. P. Shilin. Hypersingular integro-differential equations with power factors in coefficients. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 48-56. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a3/

[1] E. I. Zverovich, “Reshenie gipersingulyarnogo integro-differentsialnogo uravneniya s postoyannymi koeffitsientami”, Doklady Natsionalnoi akademii nauk Belarusi, 54(6) (2010), 5–8 | Zbl

[2] Zh. Adamar, “Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa”, Moskva: Nauka, 1978, 352 | MR

[3] I. V. Boykov, E. S. Ventsel, A. I. Boykova, “An approximate solution of hypersingular integral equations”, Applied Numerical Mathematics, 60(6) (2010), 607–628 | DOI | MR | Zbl

[4] Y-S. Chan, A. C. Fannjiang, G. H. Paulino, “Integral equations with hypersingular kernels – theory and application to fracture mechanics”, International Journal of Engineering Science, 41(7) (2003), 683–720 | DOI | MR | Zbl

[5] I. V. Boikov, “O razreshimosti gipersingulyarnykh integralnykh uravnenii”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 3(39) (2016), 86–102 | DOI

[6] E. I. Zverovich, A. P. Shilin, “Reshenie integro-differentsialnykh uravnenii s singulyarnymi i gipersingulyarnymi integralami spetsialnogo vida”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 54(4) (2018), 404–407 | DOI

[7] A. P. Shilin, “Yavnoe reshenie odnogo gipersingulyarnogo integro-differentsialnogo uravneniya vtorogo poryadka”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2019), 67–72 | DOI | Zbl

[8] E. I. Zverovich, “Obobschenie formul Sokhotskogo”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 2 (2012), 24–28

[9] F. D. Gakhov, “Kraevye zadachi”, Moskva: Nauka, 1977, 640 | MR | Zbl

[10] E. Kamke, “Spravochnik po obyknovennym differentsialnym uravneniyam”, SanktPeterburg: Lan, 2003, 576