On some classes of sublattices of the subgroup lattice
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper $G$ always denotes a group. If $K$ and $H$ are subgroups of $G$, where $K$ is a normal subgroup of $H$, then the factor group of $H$ by $K$ is called a section of $G$. Such a section is called normal, if $K$ and $H$ are normal subgroups of $G$, and trivial, if $K$ and $H$ are equal. We call any set $\Sigma$ of normal sections of $G$ a stratification of $G$, if $\Sigma$ contains every trivial normal section of $G$, and we say that a stratification $\Sigma$ of $G$ is $G$-closed, if $\Sigma$ contains every such a normal section of $G$, which is $G$-isomorphic to some normal section of $G$ belonging $\Sigma$. Now let $\Sigma$ be any $G$-closed stratification of $G$, and let $L$ be the set of all subgroups $A$ of $G$ such that the factor group of $V$ by $W$, where $V$ is the normal closure of $A$ in $G$ and $W$ is the normal core of $A$ in $G$, belongs to $\Sigma$. In this paper we describe the conditions on $\Sigma$ under which the set $L$ is a sublattice of the lattice of all subgroups of $G$ and we also discuss some applications of this sublattice in the theory of generalized finite $T$-groups.
Keywords: group; subgroup lattice; modular lattice; formation Fitting set; Fitting formation.
@article{BGUMI_2019_3_a2,
     author = {A. N. Skiba},
     title = {On some classes of sublattices of the subgroup lattice},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a2/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - On some classes of sublattices of the subgroup lattice
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 35
EP  - 47
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a2/
LA  - en
ID  - BGUMI_2019_3_a2
ER  - 
%0 Journal Article
%A A. N. Skiba
%T On some classes of sublattices of the subgroup lattice
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 35-47
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a2/
%G en
%F BGUMI_2019_3_a2
A. N. Skiba. On some classes of sublattices of the subgroup lattice. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 35-47. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a2/

[1] H. Wielandt, “Eine Verallgemenerung der invarianten Untergruppen”, Mathematische Zeitschrift, 45(1) (1939), 209–244 | DOI | MR

[2] O. H. Kegel, “Untergruppenverbande endlicher Gruppen, die Subnormalteilorverband echt enthalten”, Archiv der Mathematik, 30(1) (1978), 225–228 | DOI | MR | Zbl

[3] A. Ballester-Bolinches, L. M. Ezquerro, “Classes of Finite Groups”, 584, Dordrecht: Springer, 2006, 381 | DOI | MR

[4] A. Ballester-Bolinches, K. Doerk, M. D. Perez-Ramos, “On the lattice of F-subnormal subgroups”, Journal of Algebra, 148(1) (1992), 42–52 | DOI | MR | Zbl

[5] A. F. Vasilev, S. F. Kamornikov, V. N. Semenchuk, “O reshetkakh podgrupp konechnykh grupp”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, 1993, 27–54, Kiev: Institut matematiki AN Ukrainy

[6] K. Doerk, T. Hawkes, “Finite soluble groups”, 4, Berlin: Walter de Gruyter, 1992, 910 | MR

[7] L. A. Shemetkov, A. N. Skiba, “Formatsii algebraicheskikh sistem”, Moskva: Nauka, 1989, 256 | MR | Zbl

[8] B. Hu, J. Huang, A. N. Skiba, “Finite groups with only F-normal and F-abnormal subgroups”, Journal of Group Theory, 22 (2019), 915–926 | DOI | MR | Zbl

[9] Z. Chi, A. N. Skiba, “On two sublattices of the subgroup lattice of a finite group”, Journal of Group Theory, 22(6) (2019), 1035–1047 | DOI | MR | Zbl

[10] Z. Chi, A. N. Skiba, “On a lattice characterization of finite soluble PST-groups”, Bulletin of the Australian Mathematical Society, 99(3) (2019), 1–8 | DOI | MR

[11] A. N. Skiba, “On s-subnormal and s-permutable subgroups of finite groups”, Journal of Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[12] L. A. Shemetkov, “Formatsii konechnykh grupp”, Moskva: Nauka, 1978, 272 | MR

[13] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, “Products of Finite Groups”, 53, Berlin: Walter de Gruyter, 2010 | DOI | MR | Zbl

[14] R. K. Agrawal, “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proceedings of the American Mathematical Society, 47 (1975), 77–83 | DOI | MR | Zbl

[15] DJS. Robinson, “The structure of finite groups in which permutability is a transitive relation”, Journal of the Australian Mathematical Society, 70(2) (2001), 143–160 | DOI | MR

[16] R. A. Brice, J. Cossey, “The Wielandt subgroup of a finite soluble groups”, Journal of the London Mathematical Society, 40(2) (1989), 244–256 | DOI | MR

[17] J. C. Beidleman, B. Brewster, DJS. Robinson, “Criteria for permutability to be transitive in finite groups”, Journal of Algebra, 222(2) (1999), 400–412 | DOI | MR | Zbl

[18] A. Ballester-Bolinches, R. Esteban-Romero, “Sylow permutable subnormal subgroups of finite groups”, Journal of Algebra, 251(2) (2002), 727–738 | DOI | MR | Zbl

[19] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois Journal of Mathematics, 47(1–2) (2003), 63–69 | DOI | MR | Zbl

[20] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “A local approach to certain classes of finite groups”, Communications in Algebra, 31(12) (2003), 5931–5942 | DOI | MR | Zbl

[21] M. Asaad, “Finite groups in which normality or quasinormality is transitive”, Archiv der Mathematik, 83(4) (2004), 289–296 | DOI | MR | Zbl

[22] A. Ballester-Bolinches, J. Cossey, “Totally permutable products of finite groups satisfying SC or PST”, Monatshefte fur Mathematik, 145(2) (2005), 89–94 | DOI | MR | Zbl

[23] K. A. Al-Sharo, J. C. Beidleman, H. Heineken, M. F. Ragland, “Some characterizations of finite groups in which semipermutability is a transitive relation”, Forum Mathematicum, 22(5) (2010), 855–862 | DOI | MR | Zbl

[24] J. C. Beidleman, M. F. Ragland, “Subnormal, permutable, and embedded subgroups in finite groups”, Central European Journal of Mathematics, 9(4) (2011), 915–921 | DOI | MR | Zbl

[25] X. Yi, A. N. Skiba, “Some new characterizations of PST-groups”, Journal of Algebra, 399 (2014), 39–54 | DOI | MR | Zbl

[26] A. N. Skiba, “Some characterizations of finite s-soluble PsT-groups”, Journal of Algebra, 495 (2018), 114?–129 | DOI | MR | Zbl

[27] A. Fattahi, “Groups with only normal and abnormal subgroups”, Journal of Algebra, 28(1) (1974), 15–19 | DOI | MR | Zbl

[28] G. Ebert, S. Bauman, “A note on subnormal and abnormal chains”, Journal of Algebra, 36(2) (1975), 287–293 | DOI | MR | Zbl

[29] V. N. Semenchuk, A. N. Skiba, “On one generalization of finite U-critical groups”, Journal of Algebra and its Applications, 15(4) (2016) | DOI | MR | Zbl

[30] V. S. Monakhov, “Konechnye gruppy s abnormalnymi i U-subnormalnymi podgruppami”, Sibirskii matematicheskii zhurnal, 57(2) (2016), 447–462 | DOI | Zbl

[31] V. S. Monakhov, I. L. Sokhor, “Konechnye gruppy s formatsionno subnormalnymi primarnymi podgruppami”, Sibirskii matematicheskii zhurnal, 58(4) (2017), 851–863 | DOI | Zbl

[32] V. S. Monakhov, I. L. Sokhor, “On groups with formational subnormal Sylow subgroups”, Journal of Group Theory, 21 (2018), 273–287 | DOI | MR | Zbl

[33] V. S. Monakhov, I. L. Sokhor, “Finite groups with abnormal or formational subnormal primary subgroups”, Communications in Algebra, 47(10) (2019), 3941–3949 | DOI | MR | Zbl

[34] A. I. Maltsev, “Algebraicheskie sistemy”, Moskva: Nauka, 1970, 392 | MR | Zbl

[35] R. Schmidt, “Subgroup lattices of groups”, 14, Berlin: Walter de Gruyter, 1994, 572 | MR | Zbl

[36] G. Zappa, “Sui gruppi finiti per cui il reticolo dei sottogruppi di composizione e modulare”, Bollettino dell’Unione Matematica Italiana, 11(3) (1956), 315–318 | MR | Zbl

[37] H. B. Bray, “Between nilpotent and solvable”, Passaic: Polygonal Publishing House, 1982, 231 | MR | Zbl

[38] K. Doerk, “Minimal nicht uberauflosbare, endlicher Gruppen”, Mathematische Zeitschrift, 91(3) (1966), 198–205 | DOI | MR | Zbl

[39] O. H. Kegel, “Zur Struktur mehrafach faktorisierbarer endlicher Gruppen”, Mathematische Zeitschrift, 87(1) (1965), 42–48 | DOI | MR | Zbl