Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_3_a10, author = {G. V. Matveev}, title = {Chinese remainder theorem secret sharing in multivariate polynomials}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {129--133}, publisher = {mathdoc}, volume = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/} }
TY - JOUR AU - G. V. Matveev TI - Chinese remainder theorem secret sharing in multivariate polynomials JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 129 EP - 133 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/ LA - ru ID - BGUMI_2019_3_a10 ER -
G. V. Matveev. Chinese remainder theorem secret sharing in multivariate polynomials. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 129-133. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/
[1] C. Asmuth, J. Bloom, “A modular approach to key safeguarding”, IEEE Transactions on Information Theory, 29(2) (1983), 208–210 | DOI | MR | Zbl
[2] T. Becker, V. Weispfenning, “Grobner Bases. A Computational Approach to Commutative Algebra”, 141, New York: Springer-Verlag, 1993, 576 | DOI | MR
[3] T. Galibus, G. Matveev, N. Shenets, “Some structural and security properties of the modular secret sharing”, Symbolic and Numeric Algorithms for Scientific Computing. SYNASC 2008. 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (Timisoara, Romania), 2009, 197–200, Los Alamitos: IEEE Computer Society Press | DOI
[4] T. Galibus, G. Matveev, “Generalized mignotte’s sequences over polynomial rings”, Electronic Notes in Theoretical Computer Science, 186(14) (2007), 43–48 | DOI | MR | Zbl
[5] M. M. Vaskovskii, G. V. Matveev, “Verifikatsiya modulyarnogo razdeleniya sekreta”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2017), 17–22 | MR
[6] G. V. Matveev, V. V. Matulis, “Sovershennaya verifikatsiya modulyarnoi skhemy”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2018), 4–9 | Zbl
[7] T. Galibus, G. Matveev, “Finite Fields. Grobner Bases and Modular Secret Sharing”, Journal of Discrete Mathematical Sciences and Cryptography, 15(6) (2012), 339–348 | DOI | MR | Zbl
[8] P. Aubry, A. Valibouze, “Using galois ideals for computing relative resolvents”, Journal of Symbolic Computations, 30(6) (2000), 635–651 | DOI | MR | Zbl
[9] A. Shamir, “How to share a secret”, Communications of the ACM, 22(11) (1979), 612–613 | DOI | MR | Zbl