Chinese remainder theorem secret sharing in multivariate polynomials
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 129-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a generalization of the secret sharing using Chinese remainder theorem over the integers to multivariate polynomials over a finite field. We work with the ideals and their Gröbner bases instead of integer moduli. Therefore, the proposed method is called GB secret sharing. It was initially presented in our previous paper. Now we prove that any threshold structure has ideal GB realization. In a generic threshold modular scheme in ring of integers the sizes of the share space and the secret space are not equal. So, the scheme is not ideal and our generalization of modular secret sharing to the multivariate polynomial ring is more secure.
Keywords: Chinese remainder theorem; secret sharing; equiresidual ideals; equiprojectable sets.
@article{BGUMI_2019_3_a10,
     author = {G. V. Matveev},
     title = {Chinese remainder theorem secret sharing in multivariate polynomials},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {129--133},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/}
}
TY  - JOUR
AU  - G. V. Matveev
TI  - Chinese remainder theorem secret sharing in multivariate polynomials
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 129
EP  - 133
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/
LA  - ru
ID  - BGUMI_2019_3_a10
ER  - 
%0 Journal Article
%A G. V. Matveev
%T Chinese remainder theorem secret sharing in multivariate polynomials
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 129-133
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/
%G ru
%F BGUMI_2019_3_a10
G. V. Matveev. Chinese remainder theorem secret sharing in multivariate polynomials. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 129-133. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a10/

[1] C. Asmuth, J. Bloom, “A modular approach to key safeguarding”, IEEE Transactions on Information Theory, 29(2) (1983), 208–210 | DOI | MR | Zbl

[2] T. Becker, V. Weispfenning, “Grobner Bases. A Computational Approach to Commutative Algebra”, 141, New York: Springer-Verlag, 1993, 576 | DOI | MR

[3] T. Galibus, G. Matveev, N. Shenets, “Some structural and security properties of the modular secret sharing”, Symbolic and Numeric Algorithms for Scientific Computing. SYNASC 2008. 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (Timisoara, Romania), 2009, 197–200, Los Alamitos: IEEE Computer Society Press | DOI

[4] T. Galibus, G. Matveev, “Generalized mignotte’s sequences over polynomial rings”, Electronic Notes in Theoretical Computer Science, 186(14) (2007), 43–48 | DOI | MR | Zbl

[5] M. M. Vaskovskii, G. V. Matveev, “Verifikatsiya modulyarnogo razdeleniya sekreta”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2017), 17–22 | MR

[6] G. V. Matveev, V. V. Matulis, “Sovershennaya verifikatsiya modulyarnoi skhemy”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2018), 4–9 | Zbl

[7] T. Galibus, G. Matveev, “Finite Fields. Grobner Bases and Modular Secret Sharing”, Journal of Discrete Mathematical Sciences and Cryptography, 15(6) (2012), 339–348 | DOI | MR | Zbl

[8] P. Aubry, A. Valibouze, “Using galois ideals for computing relative resolvents”, Journal of Symbolic Computations, 30(6) (2000), 635–651 | DOI | MR | Zbl

[9] A. Shamir, “How to share a secret”, Communications of the ACM, 22(11) (1979), 612–613 | DOI | MR | Zbl