Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation properties of Fejer means of Fourier series by Chebyshev – Markov system of algebraic fractions and approximation by Fejer means of function $|x|^{s}, 0$, on the interval $[-1,1]$, are studied. One orthogonal system of Chebyshev – Markov algebraic fractions is considers, and Fejer means of the corresponding rational Fourier – Chebyshev series is introduce. The order of approximations of the sequence of Fejer means of continuous functions on a segment in terms of the continuity module and sufficient conditions on the parameter providing uniform convergence are established. A estimates of the pointwise and uniform approximation of the function $|x|^{s}, 0$, on the interval $[-1,1]$ , the asymptotic expressions under $n\rightarrow \infty$ of majorant of uniform approximations, and the optimal value of the parameter, which provides the highest rate of approximation of the studied functions are sums of rational use of Fourier – Chebyshev are found.
Keywords: Fourier – Chebyshev series; partial sums; Fejer means; modulus of continuity; uniform convergence; asymptotic estimates; exact constants.
@article{BGUMI_2019_3_a1,
     author = {P. G. Potseiko and Y. A. Rovba},
     title = {Fejer means of rational {Fourier} {\textendash} {Chebyshev} series and approximation of function $|x|^{s}$},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - Y. A. Rovba
TI  - Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 18
EP  - 34
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/
LA  - ru
ID  - BGUMI_2019_3_a1
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A Y. A. Rovba
%T Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 18-34
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/
%G ru
%F BGUMI_2019_3_a1
P. G. Potseiko; Y. A. Rovba. Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 18-34. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/

[1] L. Fejer, “Untersuchungen uber Fouriersche Reihen”, Mathematische Annalen, 58(1–2) (1904), 51–69 | DOI | MR | Zbl

[2] H. Lebesgue, “Sur les integrales singulieres”, Annales de la faculte des sciences de Toulouse, 1 (1909), 25–117 | MR

[3] S. Bernstein, “Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne”, Bruxelles: Hayez, imprimeur des Academies Royales, 1912, 104

[4] S. M. Nikolskii, “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izvestiya AN SSSR. Seriya matematicheskaya, 4(6) (1940), 501–508

[5] A. Zygmund, “On the degree of approximation of functions by Fejer means”, Bulletin of the American Mathematical Society, 51(4) (1945), 274–278 | DOI | MR | Zbl

[6] O. A. Novikov, O. G. Rovenskaya, “Priblizhenie klassov integralov Puassona summami Feiera”, Kompyuternye issledovaniya i modelirovanie, 7(4) (2015), 813–819 | DOI

[7] A. V. Efimov, “O priblizhenii nekotorykh klassov nepreryvnykh funktsii summami Fure i summami Feiera”, Izvestiya AN SSSR. Seriya matematicheskaya, 22(1) (1958), 81–116 | Zbl

[8] G. K. Lebed, A. A. Avdeenko, “O priblizhenii periodicheskikh funktsii summami Feiera”, Izvestiya AN SSSR. Seriya matematicheskaya, 35(1) (1971), 83–92 | Zbl

[9] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya Akademii nauk Armyanskoi SSR. Seriya fiziko-matematicheskaya, 9(7) (1956), 1–27

[10] V. N. Rusak, “Ratsionalnye funktsii kak apparat priblizheniya”, Minsk: BGU imeni VI Lenina, 1979, 179

[11] P. P. Petrushev, V. A. Popov, “Rational approximation of real functions”, Cambridge: Cambridge University Press, 1987, 386 | MR

[12] V. N. Rusak, “Tochnye poryadki nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Doklady Akademii nauk SSSR, 279(4) (1984), 810–812 | Zbl

[13] V. N. Rusak, “Tochnye poryadkovye otsenki dlya nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Matematicheskii sbornik, 128(4) (1985), 492–515

[14] A. A. Pekarskii, “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matematicheskii sbornik, 133(1) (1987), 86?–102 | Zbl

[15] K. A. Smotritskii, “Approksimatsiya ratsionalnymi operatorami Valle Pussena na otrezke”, Trudy Instituta matematiki NAN Belarusi, 9 (2001), 136–139

[16] E. A. Rovba, “Ratsionalnye integralnye operatory na otrezke”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (1996), 34–39 | MR | Zbl

[17] K. A. Smotritskii, “O priblizhenii vypuklykh funktsii ratsionalnymi integralnymi operatorami na otrezke”, Vestnik BGU. Fizika. Matematika. Informatika, 3 (2005), 64–70 | MR | Zbl

[18] E. A. Rovba, “Priblizhenie funktsii, differentsiruemykh v smysle Rimana – Liuvillya, ratsionalnymi operatorami”, Doklady Natsionalnoi akademii nauk Belarusi, 40(6) (1996), 18–22 | MR | Zbl

[19] E. A. Rovba, “O priblizhenii ratsionalnymi operatorami Feiera i Dzheksona funktsii ogranichennoi variatsii”, Doklady Natsionalnoi akademii nauk Belarusi, 42(4) (1998), 13–17 | MR | Zbl

[20] S. Bernstein, “Sur la meilleure approximation de |x| par des polynomes de degres donnes”, Acta Mathematica, 37 (1914), 1–57 | DOI | MR

[21] D. J. Newman, “Rational approximation to |x|”, Michigan Mathematical Journal, 11(1) (1964), 11–14 | DOI | MR | Zbl

[22] A. P. Bulanov, “Asimptotika dlya naimenshikh uklonenii |x| ot ratsionalnykh funktsii”, Matematicheskii sbornik, 76(118-2) (1968), 288–303 | Zbl

[23] N. S. Vyacheslavov, “O priblizhenii funktsii |x| ratsionalnymi funktsiyami”, Matematicheskie zametki, 16(1) (1974), 163–171 | MR | Zbl

[24] G. Shtal, “Nailuchshie ravnomernye ratsionalnye approksimatsii |x| na [-1, 1]”, Matematicheskii sbornik, 183(8) (1992), 85–118

[25] C. N. Bernshtein, “O nailuchshem priblizhenii |x| (in exp. p) pri pomoschi mnogochlenov vesma vysokoi stepeni”, Izvestiya AN SSSR. Seriya matematicheskaya, 2(2) (1938), 169–190 | Zbl

[26] G. Freud, J. Szabados, “Rational approximation to x (in exp. a)”, Acta Mathematica Academiae Scientiarum Hungaricae, 18(3–4) (1967), 393–399 | DOI | MR | Zbl

[27] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matematicheskii sbornik, 73(4) (1967), 630–638 | Zbl

[28] N. Vyacheslavov, “Ob approksimatsii x (in exp. a) ratsionalnymi funktsiyami”, Izvestiya AN SSSR; Seriya matematicheskaya, 44(1) (1980), 92–109 | MR | Zbl

[29] H. R. Stahl, “Best uniform rational approximation of x (in exp. a) on [0, 1]”, Bulletin of the American Mathematical Society, 28(1) (1993), 116–122 | DOI | MR | Zbl

[30] M. Revers, “On the asymptotics of polynomial interpolation to x (in exp. a) at the Chebyshev nodes”, Journal of Approximation Theory, 65 (2013), 70–82 | DOI | MR

[31] R. A. Raitsin, “Asimptoticheskie svoistva ravnomernykh priblizhenii funktsii s algebraicheskimi osobennostyami chastichnymi summami ryada Fure – Chebysheva”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 3 (1980), 45–49 | MR

[32] Y. Rouba, P. Patseika, K. Smatrytski, “On one system of rational Chebyshev – Markov fractions”, Analysis Mathematica, 44(1) (2018), 115–140 | DOI | MR | Zbl

[33] I. P. Natanson, “Konstruktivnaya teoriya funktsii”, Moskva: GITTL, 1949, 684 | MR

[34] A. F. Timan, “Teoriya priblizhenii funktsii deistvitelnogo peremennogo”, Moskva: GIFML, 1960, 624

[35] E. Titchmarsh, “Teoriya funktsii”, Moskva: Nauka, 1980, 463

[36] E. A. Rovba, P. G. Potseiko, “Approksimatsiya funktsii |x| (in exp. s) na otrezke [-1, 1] chastichnymi summami ratsionalnogo ryada Fure – Chebysheva”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 9(3) (2019), 16–28

[37] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, “Lektsii po teorii funktsii kompleksnogo peremennogo”, Moskva: Nauka, 1989, 480 | MR

[38] M. A. Evgrafov, “Asimptoticheskie otsenki i tselye funktsii”, Moskva: Nauka, 1979, 320 | MR | Zbl

[39] M. V. Fedoryuk, “Asimptotika. Integraly i ryady”, Moskva: Nauka, 1987, 544 | MR | Zbl

[40] E. T. Copson, “Asymptotic Expansions”, 55, Cambridge: Cambridge University Press, 1965, 124 | MR