Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_3_a1, author = {P. G. Potseiko and Y. A. Rovba}, title = {Fejer means of rational {Fourier} {\textendash} {Chebyshev} series and approximation of function $|x|^{s}$}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {18--34}, publisher = {mathdoc}, volume = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/} }
TY - JOUR AU - P. G. Potseiko AU - Y. A. Rovba TI - Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$ JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 18 EP - 34 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/ LA - ru ID - BGUMI_2019_3_a1 ER -
%0 Journal Article %A P. G. Potseiko %A Y. A. Rovba %T Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$ %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 18-34 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/ %G ru %F BGUMI_2019_3_a1
P. G. Potseiko; Y. A. Rovba. Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2019), pp. 18-34. http://geodesic.mathdoc.fr/item/BGUMI_2019_3_a1/
[1] L. Fejer, “Untersuchungen uber Fouriersche Reihen”, Mathematische Annalen, 58(1–2) (1904), 51–69 | DOI | MR | Zbl
[2] H. Lebesgue, “Sur les integrales singulieres”, Annales de la faculte des sciences de Toulouse, 1 (1909), 25–117 | MR
[3] S. Bernstein, “Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne”, Bruxelles: Hayez, imprimeur des Academies Royales, 1912, 104
[4] S. M. Nikolskii, “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izvestiya AN SSSR. Seriya matematicheskaya, 4(6) (1940), 501–508
[5] A. Zygmund, “On the degree of approximation of functions by Fejer means”, Bulletin of the American Mathematical Society, 51(4) (1945), 274–278 | DOI | MR | Zbl
[6] O. A. Novikov, O. G. Rovenskaya, “Priblizhenie klassov integralov Puassona summami Feiera”, Kompyuternye issledovaniya i modelirovanie, 7(4) (2015), 813–819 | DOI
[7] A. V. Efimov, “O priblizhenii nekotorykh klassov nepreryvnykh funktsii summami Fure i summami Feiera”, Izvestiya AN SSSR. Seriya matematicheskaya, 22(1) (1958), 81–116 | Zbl
[8] G. K. Lebed, A. A. Avdeenko, “O priblizhenii periodicheskikh funktsii summami Feiera”, Izvestiya AN SSSR. Seriya matematicheskaya, 35(1) (1971), 83–92 | Zbl
[9] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya Akademii nauk Armyanskoi SSR. Seriya fiziko-matematicheskaya, 9(7) (1956), 1–27
[10] V. N. Rusak, “Ratsionalnye funktsii kak apparat priblizheniya”, Minsk: BGU imeni VI Lenina, 1979, 179
[11] P. P. Petrushev, V. A. Popov, “Rational approximation of real functions”, Cambridge: Cambridge University Press, 1987, 386 | MR
[12] V. N. Rusak, “Tochnye poryadki nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Doklady Akademii nauk SSSR, 279(4) (1984), 810–812 | Zbl
[13] V. N. Rusak, “Tochnye poryadkovye otsenki dlya nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Matematicheskii sbornik, 128(4) (1985), 492–515
[14] A. A. Pekarskii, “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matematicheskii sbornik, 133(1) (1987), 86?–102 | Zbl
[15] K. A. Smotritskii, “Approksimatsiya ratsionalnymi operatorami Valle Pussena na otrezke”, Trudy Instituta matematiki NAN Belarusi, 9 (2001), 136–139
[16] E. A. Rovba, “Ratsionalnye integralnye operatory na otrezke”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (1996), 34–39 | MR | Zbl
[17] K. A. Smotritskii, “O priblizhenii vypuklykh funktsii ratsionalnymi integralnymi operatorami na otrezke”, Vestnik BGU. Fizika. Matematika. Informatika, 3 (2005), 64–70 | MR | Zbl
[18] E. A. Rovba, “Priblizhenie funktsii, differentsiruemykh v smysle Rimana – Liuvillya, ratsionalnymi operatorami”, Doklady Natsionalnoi akademii nauk Belarusi, 40(6) (1996), 18–22 | MR | Zbl
[19] E. A. Rovba, “O priblizhenii ratsionalnymi operatorami Feiera i Dzheksona funktsii ogranichennoi variatsii”, Doklady Natsionalnoi akademii nauk Belarusi, 42(4) (1998), 13–17 | MR | Zbl
[20] S. Bernstein, “Sur la meilleure approximation de |x| par des polynomes de degres donnes”, Acta Mathematica, 37 (1914), 1–57 | DOI | MR
[21] D. J. Newman, “Rational approximation to |x|”, Michigan Mathematical Journal, 11(1) (1964), 11–14 | DOI | MR | Zbl
[22] A. P. Bulanov, “Asimptotika dlya naimenshikh uklonenii |x| ot ratsionalnykh funktsii”, Matematicheskii sbornik, 76(118-2) (1968), 288–303 | Zbl
[23] N. S. Vyacheslavov, “O priblizhenii funktsii |x| ratsionalnymi funktsiyami”, Matematicheskie zametki, 16(1) (1974), 163–171 | MR | Zbl
[24] G. Shtal, “Nailuchshie ravnomernye ratsionalnye approksimatsii |x| na [-1, 1]”, Matematicheskii sbornik, 183(8) (1992), 85–118
[25] C. N. Bernshtein, “O nailuchshem priblizhenii |x| (in exp. p) pri pomoschi mnogochlenov vesma vysokoi stepeni”, Izvestiya AN SSSR. Seriya matematicheskaya, 2(2) (1938), 169–190 | Zbl
[26] G. Freud, J. Szabados, “Rational approximation to x (in exp. a)”, Acta Mathematica Academiae Scientiarum Hungaricae, 18(3–4) (1967), 393–399 | DOI | MR | Zbl
[27] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matematicheskii sbornik, 73(4) (1967), 630–638 | Zbl
[28] N. Vyacheslavov, “Ob approksimatsii x (in exp. a) ratsionalnymi funktsiyami”, Izvestiya AN SSSR; Seriya matematicheskaya, 44(1) (1980), 92–109 | MR | Zbl
[29] H. R. Stahl, “Best uniform rational approximation of x (in exp. a) on [0, 1]”, Bulletin of the American Mathematical Society, 28(1) (1993), 116–122 | DOI | MR | Zbl
[30] M. Revers, “On the asymptotics of polynomial interpolation to x (in exp. a) at the Chebyshev nodes”, Journal of Approximation Theory, 65 (2013), 70–82 | DOI | MR
[31] R. A. Raitsin, “Asimptoticheskie svoistva ravnomernykh priblizhenii funktsii s algebraicheskimi osobennostyami chastichnymi summami ryada Fure – Chebysheva”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 3 (1980), 45–49 | MR
[32] Y. Rouba, P. Patseika, K. Smatrytski, “On one system of rational Chebyshev – Markov fractions”, Analysis Mathematica, 44(1) (2018), 115–140 | DOI | MR | Zbl
[33] I. P. Natanson, “Konstruktivnaya teoriya funktsii”, Moskva: GITTL, 1949, 684 | MR
[34] A. F. Timan, “Teoriya priblizhenii funktsii deistvitelnogo peremennogo”, Moskva: GIFML, 1960, 624
[35] E. Titchmarsh, “Teoriya funktsii”, Moskva: Nauka, 1980, 463
[36] E. A. Rovba, P. G. Potseiko, “Approksimatsiya funktsii |x| (in exp. s) na otrezke [-1, 1] chastichnymi summami ratsionalnogo ryada Fure – Chebysheva”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 9(3) (2019), 16–28
[37] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, “Lektsii po teorii funktsii kompleksnogo peremennogo”, Moskva: Nauka, 1989, 480 | MR
[38] M. A. Evgrafov, “Asimptoticheskie otsenki i tselye funktsii”, Moskva: Nauka, 1979, 320 | MR | Zbl
[39] M. V. Fedoryuk, “Asimptotika. Integraly i ryady”, Moskva: Nauka, 1987, 544 | MR | Zbl
[40] E. T. Copson, “Asymptotic Expansions”, 55, Cambridge: Cambridge University Press, 1965, 124 | MR