Explicit solution of one hypersingular integro-differential equation of the second order
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear equation on the curve located on the complex plane is studied. The equation contains the desired function, its derivatives of the first and second orders, as well as hypersingular integrals with the desired function. The coefficients of the equation have a special structure. The equation is reduced to the Riemann boundary value problem for analytic functions and two second order linear differential equations. The boundary value problem is solved by Gakhov formulas, and the differential equations are solved by the method of variation of arbitrary constants. The solution of the original equation is constructed in quadratures. The result is formulated as a theorem. An example is given
Keywords: integro-differential equation; hypersingular integral; Riemann boundary value problem; linear differential equation.
@article{BGUMI_2019_2_a7,
     author = {A. P. Shilin},
     title = {Explicit solution of one hypersingular integro-differential equation of the second order},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a7/}
}
TY  - JOUR
AU  - A. P. Shilin
TI  - Explicit solution of one hypersingular integro-differential equation of the second order
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 67
EP  - 72
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a7/
LA  - ru
ID  - BGUMI_2019_2_a7
ER  - 
%0 Journal Article
%A A. P. Shilin
%T Explicit solution of one hypersingular integro-differential equation of the second order
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 67-72
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a7/
%G ru
%F BGUMI_2019_2_a7
A. P. Shilin. Explicit solution of one hypersingular integro-differential equation of the second order. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 67-72. http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a7/

[1] I. V. Boykov, E. S. Ventsel, A. I. Boykova, “An approximate solution of hypersingular integral equations”, Applied Numerical Mathematics, 60(6) (2010), 607–?628 | DOI | MR | Zbl

[2] Y-S. Chan, A. C. Fannjiang, G. H. Paulino, “Integral equations with hypersingular kernels – theory and applications to fracture mechanics”, International Journal of Engineering Science, 41(7) (2003), 683–720 | DOI | MR | Zbl

[3] E. I. Zverovich, “Reshenie gipersingulyarnogo integro-differentsialnogo uravneniya s postoyannymi koeffitsientami”, Doklady Natsionalnoi akademii nauk Belarusi, 54(6) (2010), 5–8 | Zbl

[4] E. I. Zverovich, A. P. Shilin, “Reshenie integro-differentsialnykh uravnenii s singulyarnymi i gipersingulyarnymi integralami spetsialnogo vida”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 54(4) (2018), 404–407 | DOI

[5] E. I. Zverovich, “Obobschenie formul Sokhotskogo”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 2 (2012), 24–28

[6] F. D. Gakhov, “Kraevye zadachi”, Moskva: Nauka, 1977, 640 | MR | Zbl