A model of distributed object-based stochastic hybrid systems
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article offers a mathematical model for distributed object-oriented stochastic hybrid systems (DOBSHS). DOBSHS are composite objects communicating with other objects through the exchange of messages through an asynchronous medium such as a network. An important component of the model is the probabilistic nature of the DOBSHS, in which the state of the system is described by stochastic differential equations with instantaneous probabilistic state changes when certain conditions are met. Also probabilistic is the nature of the messaging environment, in which the model of message delivery time is a random variable. Such problems are often encountered in practice in various areas and issues of formal modeling and verification of their properties are very important. The article presents a mathematical model of DOBSHS and proved that it has a Markov property.
Keywords: mathematical modeling; hybrid systems; stochastic systems; Markov property; model specification.
@article{BGUMI_2019_2_a5,
     author = {R. E. Sharykin and A. N. Kourbatski},
     title = {A model of distributed object-based stochastic hybrid systems},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a5/}
}
TY  - JOUR
AU  - R. E. Sharykin
AU  - A. N. Kourbatski
TI  - A model of distributed object-based stochastic hybrid systems
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 52
EP  - 61
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a5/
LA  - ru
ID  - BGUMI_2019_2_a5
ER  - 
%0 Journal Article
%A R. E. Sharykin
%A A. N. Kourbatski
%T A model of distributed object-based stochastic hybrid systems
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 52-61
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a5/
%G ru
%F BGUMI_2019_2_a5
R. E. Sharykin; A. N. Kourbatski. A model of distributed object-based stochastic hybrid systems. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 52-61. http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a5/

[1] G. Pola, M. L. Bujorianu, J. Lygeros, Benedetto. Di, “Stochastic hybrid models: an overview”, Proceedings of the IFAC conference on analysis and design of hybrid systems (St Malo, France), 2003, 45–50, Oxford: Elsevier | MR

[2] O. Maler, Z. Manna, A. Pnueli, “From timed to hybrid systems. Real-Time: Theory in practice”, Proceedings of the REX workshop (Mook, Netherlands), 1992, 447–484, Berlin: Springer-Verlag | MR

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, “The Algorithmic Analysis of Hybrid Systems”, Theoretical Computer Science, 138(1) (1995), 3–34 | DOI | MR | Zbl

[4] N. A. Lynch, R. Segala, F. W. Vaandrager, “Hybrid I/O automata”, Information and Computation, 185(1) (2003), 105–157 | DOI | MR | Zbl

[5] R. Alur, T. Dang, J. M. Esposito, Y. Hur, F. Ivancic, V. Kumar, “Hierarchical modeling and analysis of embedded systems”, Proceedings of the IEEE, 91(1) (2003), 11–28 | DOI

[6] J. P. Hespanha, “Stochastic hybrid systems: application to communication networks”, Hybrid systems: Computation and control. 7th International workshop (Philadelphia, USA), 2004, 387–401, Berlin: Springer-Verlag | DOI

[7] I. Hwang, J. Hwang, C. J. Tomlin, “Flight-model-based aircraft conflict detection using a residual-mean interacting multiple model algorithm”, AIAA guidance, navigation, and control conference and exhibit (Austin, USA), 2003, Reston: American Institute of Aeronautics and Astronautics | DOI

[8] I. Hwang, J. Hwang, C. J. Tomlin, “Final project report [Internet]”, 2005 | DOI

[9] MHA. Davis, M. H. Vellekoop, “Permanent health insurance: a case study in piecewise-deterministic Markov modeling”, Mitteilungen der Schweizerische Vereinigung der Versicherungsmathematiker, 2 (1995), 177–212 | MR

[10] M. K. Ghosh, A. Arapostathis, S. I. Marcus, “Optimal control of switching diffusions with application to flexible manufacturing systems”, SIAM Journal on Control Optimization, 31(5) (1993), 1183–1204 | DOI | MR | Zbl

[11] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, K. Sonmez, “Pathway logic: symbolic analysis of biological signaling”, Proceedings of the 7th pacific symposium on biocomputing (Lihue, USA), 2002, 400–412 | DOI

[12] P. Lincoln, A. Tiwari, “Symbolic systems biology: hybrid modeling and analysis of biological networks”, Hybrid systems: Computation and control. 7th International workshop (Philadelphia, USA), 2004, 660–672 | DOI | Zbl

[13] PJE. Goss, J. Peccoud, “Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets”, Proceedings of the National Academy of Sciences of the United States of America, 95(12) (1998), 6750–6755 | DOI

[14] M. L. Bujorianu, J. Lygeros, “Toward a general theory of stochastic hybrid systems”, Stochastic Hybrid Systems. Lecture Notes in Control and Information Science, 337 (2006), 3–30, Berlin: Springer | DOI | MR | Zbl

[15] N. Dershowitz, J. P. Jouannaud, “Rewrite Systems”, Handbook of Theoretical Computer Science. Formal Models and Semantics, 1990, 243–320, Cambridge: MIT Press | MR

[16] G. A. Agha, J. Meseguer, K. Sen, “PMaude: Rewrite-based specification language for probabilistic object systems”, Electronic Notes in Theoretical Computer Science, 153(2) (2006), 213–239 | DOI

[17] J. Meseguer, “Conditional Rewriting Logic: Deduction, Models and Concurrency”, Conditional and typed rewriting systems, Montreal, Canada (2nd International CTRS workshop), Berlin | DOI

[18] N. Kumar, K. Sen, J. Meseguer, G. Agha, “A rewriting based model for probabilistic distributed object systems”, Formal methods for open object-based distributed systems. 6th IFIP WG 6.1 International conference (Paris, France), 2003, 32–46, Berlin: Springer | DOI | Zbl

[19] S. K. Berberian, “Borel Spaces”, Austin: University of Texas at Austin, 1998

[20] M. Giry, “A categorical approach to probability theory”, Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, 915 (1982), 68–85, Berlin: Springer | DOI | MR

[21] P. Panangaden, “The category of Markov kernels”, Electronic Notes in Theoretical Computer Science, 22 (1999), 171–187 | DOI | MR