Quasinormal Fitting classes of finite groups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{P}$ be the set of all primes, $Z_{n}$ a cyclic group of order $n$ and $X ~wr ~Z_{n}$ the regular wreath product of the group $X$ with $Z_{n}$. A Fitting class $\mathfrak{F}$ is said to be $\mathfrak{X}$-quasinormal (or quasinormal in a class of groups $\mathfrak{X}$) if $\mathfrak{F}\subseteq \mathfrak{X}$ is a prime, groups $G\in \mathfrak{F}$ and $G ~wr ~Z_{p}\in \mathfrak{X}$, then there exists a natural number $m$ such that $G^{m} ~wr ~Z_{p}\in \mathfrak{F}$. If $\mathfrak{X}$ is the class of all soluble groups, then $\mathfrak{F}$ is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschutz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial $\mathfrak{X}$-quasinormal Fitting classes is a nontrivial $\mathfrak{X}$-quasinormal Fitting class. In particular, there exists the smallest nontrivial $\mathfrak{X}$-quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture about the structure of a Fitting class for the case of $\mathfrak{X}$-quasinormal classes, where $\mathfrak{X}$ is a local Fitting class of partially soluble groups.
Keywords: Fitting class; quasinormal Fitting class; the Lockett conjecture; local Fitting class.
@article{BGUMI_2019_2_a1,
     author = {A. V. Martsinkevich},
     title = {Quasinormal {Fitting} classes of finite groups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a1/}
}
TY  - JOUR
AU  - A. V. Martsinkevich
TI  - Quasinormal Fitting classes of finite groups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 18
EP  - 26
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a1/
LA  - ru
ID  - BGUMI_2019_2_a1
ER  - 
%0 Journal Article
%A A. V. Martsinkevich
%T Quasinormal Fitting classes of finite groups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 18-26
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a1/
%G ru
%F BGUMI_2019_2_a1
A. V. Martsinkevich. Quasinormal Fitting classes of finite groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 18-26. http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a1/

[1] K. Doerk, T. Hawkes, “Finite Soluble Groups”, Berlin: Walter de Gruyter, 1992 | MR | Zbl

[2] H. Laue, “Uber nichtauflosbare normale Fittingklassen”, Journal of Algebra, 45(2) (1977), 274–283 | DOI | MR | Zbl

[3] D. Blessenohl, W. Gaschutz, “Uber normale Schunck- und Fittingklassen”, Mathematische Zeitschrift, 118(1) (1970), 1–8 | DOI | MR | Zbl

[4] A. R. Makan, “Fitting classes with the wreath product property are normal”, Journal of the London Mathematical Society, s2-8(2) (1974), 245–246 | DOI | MR | Zbl

[5] P. Hauck, “Zur Theorie der Fittingklassen endlicher auflosbarer Gruppen [dissertation]”, Mainz, 1977

[6] A. V. Martsinkevich, “O probleme Derka – Khouksa dlya lokalno normalnykh klassov Fittinga”, Problemy fiziki, matematiki i tekhniki, 4(37) (2018), 90–97 | MR | Zbl

[7] F. P. Lockett, “The Fitting class F*”, Mathematische Zeitschrift, 137(2) (1974), 131–136 | DOI | MR | Zbl

[8] N. T. Vorobev, “O predpolozhenii Khouksa dlya radikalnykh klassov”, Sibirskii matematicheskii zhurnal, 37(6) (1996), 1296–1302 | Zbl

[9] R. A. Bryce, J. Cossey, “A problem in the theory of normal Fitting classes”, Mathematische Zeitschrift, 141(2) (1975), 99–110 | DOI | MR | Zbl

[10] J. C. Beidleman, P. Hauck, “Uber Fittingklassen und die Lockett-vermutung”, Mathematische Zeitschrift, 167(2) (1979), 161–167 | DOI | MR | Zbl

[11] N. T. Vorobev, “O radikalnykh klassakh konechnykh grupp s usloviem Loketta”, Matematicheskie zametki, 43(2) (1988), 161–168 | Zbl

[12] L. Zhu, N. Yang, N. T. Vorob’ev, “On Lockett pairs and Lockett conjecture for ?-soluble Fitting classes”, Bulletin of the Malaysian Mathematical Sciences Society, 36(3) (2013), 825–832 | MR | Zbl

[13] R. A. Bryce, J. Cossey, “Subgroup closed Fitting classes are formations”, Mathematical Proceedings of the Cambridge Philosophical Society, 91(2) (1982), 225–258 | DOI | MR | Zbl

[14] N. T. Vorobev, “Lokalnost razreshimykh nasledstvennykh klassov Fittinga”, Matematicheskie zametki, 51(3) (1992), 3–8 | Zbl

[15] P. Hauck, “Fittingklassen und Kranzprodukte”, Journal of Algebra, 59(2) (1979), 313–329 | DOI | MR | Zbl

[16] R. A. Bryce, J. Cossey, “Subdirect product closed Fitting classes”, Proceedings of the Second International Conference on the Theory of Groups (Australia), 1974, 158–164, Canberra: Springer | MR

[17] W. Guo, X. Liu, B. Li, “On F-radicals of finite Pi-soluble groups”, Algebra and Discrete Mathematics, 3 (2006), 49–54 | MR | Zbl

[18] N. T. Vorobev, “O maksimalnykh i minimalnykh gruppovykh funktsiyakh lokalnykh klassov Fittinga”, Voprosy algebry, 7 (1992), 60–69 | MR | Zbl

[19] M. Frick, M. F. Newman, “Soluble linear groups”, Bulletin of the Australian Mathematical Society, 6(1) (1972), 31–44 | DOI | MR | Zbl

[20] E. N. Zalesskaya, N. N. Vorobev, “O reshetkakh chastichno lokalnykh klassov Fittinga”, Sibirskii matematicheskii zhurnal, 50(6) (2009), 1319–1327 | MR | Zbl

[21] S. A. Chunikhin, “Podgruppy konechnykh grupp”, Minsk: Nauka i tekhnika, 1964, 157 | MR

[22] M. D. Perez-Ramos, “On A-normality, strong normality and F-dual pronormal subgroups in Fitting classes”, Journal of Group Theory, 3(2) (2000), 127–145 | DOI | MR | Zbl