Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_2_a0, author = {T. G. Shahava}, title = {Rational mnemofunctions on $\mathbb{R}$}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--17}, publisher = {mathdoc}, volume = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a0/} }
T. G. Shahava. Rational mnemofunctions on $\mathbb{R}$. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2019), pp. 6-17. http://geodesic.mathdoc.fr/item/BGUMI_2019_2_a0/
[1] J. F. Colombeau, “New generalized functions and multiplication of distributions”, Amsterdam: North-Holland, 1984, 374 | MR
[2] Yu. V. Egorov, “K teorii obobschennykh funktsii”, Uspekhi matematicheskikh nauk, 45(5) (1990), 3–40 | Zbl
[3] A. B. Antonevich, Ya. V. Radyno, “Ob obschem metode postroeniya algebr obobschennykh funktsii”, Doklady AN SSSR, 318(2) (1991), 267–270 | Zbl
[4] V. S. Vladimirov, “Obobschennye funktsii v matematicheskoi fizike”, Moskva: Nauka, 1979, 320 | MR
[5] G. Bremerman, “Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure”, Moskva: Mir, 1968, 276 | MR | Zbl
[6] A. B. Antonevich, T. G. Shagova, “Vlozheniya raspredelenii v algebru mnemofunktsii na okruzhnosti”, Problemy fiziki, matematiki i tekhniki, 4(37) (2018), 52–61 | Zbl
[7] P. Antosik, Ya. Mikusinskii, R. Sikorskii, “Teoriya obobschennykh funktsii. Sekventsialnyi podkhod”, Moskva: Mir, 1976, 311