Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_1_a8, author = {V. M. Volkov and A. V. Prokonina}, title = {Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {69--76}, publisher = {mathdoc}, volume = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/} }
TY - JOUR AU - V. M. Volkov AU - A. V. Prokonina TI - Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 69 EP - 76 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/ LA - ru ID - BGUMI_2019_1_a8 ER -
%0 Journal Article %A V. M. Volkov %A A. V. Prokonina %T Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 69-76 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/ %G ru %F BGUMI_2019_1_a8
V. M. Volkov; A. V. Prokonina. Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 69-76. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/
[1] A. N. Konovalov, “Metod fiktivnykh oblastei v zadachakh filtratsii dvukhfaznoi neszhimaemoi zhidkosti s uchetom kapillyarnykh sil”, Chislennye metody mekhaniki sploshnoi sredy, 3(5) (1972), 52–68
[2] A. N. Konovalov, G. V. Konyukh, N. V. Tsurikov, “O printsipakh postroeniya iteratsionnykh protsessov v metode fiktivnykh oblastei”, Variatsionnye metody v zadachakh chislennogo analiza: sbornik nauchnykh trudov, 1986, 37–52, Novosibirsk: Sibirskoe otdelenie AN SSSR
[3] A. N. Konovalov, “Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti”, Novosibirsk: Nauka, 1988 | MR | Zbl
[4] P. N. Vabischevich, R. V. Gassiev, P. A. Pulatov, “Vychislitelnaya realizatsiya metoda fiktivnykh oblastei dlya ellipticheskikh uravnenii na osnove poperemenno-treugolnogo metoda”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 27(9) (1987), 1381–1387
[5] P. N. Vabischevich, “Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki”, Moskva: URSS, 2016 | MR
[6] A. A. Samarskii, “Teoriya raznostnykh skhem”, Moskva: Nauka, 1989
[7] S. Turovets, V. Volkov, A. Zherdetsky, A. Prakonina, A. D. Malony, “A 3D finite-difference BiCG iterative solver with the Fourier – Jacobi preconditioner for the anisotropic EIT/EEG forward problem”, Computational and Mathematical Methods in Medicine, 2014 (2014), 12 | DOI | MR | Zbl
[8] A. A. Samarskii, V. I. Mazhukin, P. P. Matus, G. I. Shishkin, “Monotonnye raznostnye skhemy dlya uravnenii so smeshannymi proizvodnymi”, Matematicheskoe modelirovanie, 13(2) (2001), 17–26 | Zbl
[9] I. V. Rybak, “Monotone and conservative difference schemes for elliptic equations with mixed derivatives”, Mathematical Modelling and Analysis, 9(2) (2004), 169–178 | DOI | MR | Zbl
[10] V. M. Volkov, E. V. Prokonina, “Raznostnye skhemy i iteratsionnye metody dlya mnogomernykh ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 54(4) (2018), 454–459 | DOI
[11] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, “Templates for the solution of linear systems: building blocks for iterative methods”, Philadelphia: SIAM, 1994, 143 | MR
[12] S. I. Martynenko, “Universalnaya mnogosetochnaya tekhnologiya dlya chislennogo resheniya differentsialnykh uravnenii v chastnykh proizvodnykh na strukturirovannykh setkakh”, Vychislitelnye metody i programmirovanie, 1(1) (2000), 83–102