Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Development of efficient finite difference schemes and iterative methods for solving anisotropic diffusion problems in an arbitrary geometry domain is considered. To simplify the formulation of the Neumann boundary conditions, the method of fictitious domains is used. On the example of a two-dimensional model problem of potential distribution in an isolated anisotropic ring conductor a comparative efficiency analysis of some promising finite-difference schemes and iterative methods in terms of their compatibility with the fictitious domain method is carried out. On the basis of numerical experiments empirical estimates of the asymptotic dependence of the convergence rate of the bi-conjugate gradient method with Fourier – Jacobi and incomplete LU factorization preconditioners on the step size and the value of the small parameter determining the continuation of the conductivity coefficient in the fictitious domain method are obtained. It is shown, that for one of the considered schemes the Fourier – Jacobi preconditioner is spectrally optimal and allows to eliminate the asymptotical dependence of the iterations number to achieve a given accuracy both on the value of the step size and the value of the small parameter in the fictitious domain method.
Keywords: finite-difference schemes; elliptic equations; mixed derivatives; iterative methods; fictitious domain method.
@article{BGUMI_2019_1_a8,
     author = {V. M. Volkov and A. V. Prokonina},
     title = {Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/}
}
TY  - JOUR
AU  - V. M. Volkov
AU  - A. V. Prokonina
TI  - Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 69
EP  - 76
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/
LA  - ru
ID  - BGUMI_2019_1_a8
ER  - 
%0 Journal Article
%A V. M. Volkov
%A A. V. Prokonina
%T Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 69-76
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/
%G ru
%F BGUMI_2019_1_a8
V. M. Volkov; A. V. Prokonina. Iterative realization of finite difference schemes in the fictitious domain method for elliptic problems with mixed derivatives. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 69-76. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a8/

[1] A. N. Konovalov, “Metod fiktivnykh oblastei v zadachakh filtratsii dvukhfaznoi neszhimaemoi zhidkosti s uchetom kapillyarnykh sil”, Chislennye metody mekhaniki sploshnoi sredy, 3(5) (1972), 52–68

[2] A. N. Konovalov, G. V. Konyukh, N. V. Tsurikov, “O printsipakh postroeniya iteratsionnykh protsessov v metode fiktivnykh oblastei”, Variatsionnye metody v zadachakh chislennogo analiza: sbornik nauchnykh trudov, 1986, 37–52, Novosibirsk: Sibirskoe otdelenie AN SSSR

[3] A. N. Konovalov, “Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti”, Novosibirsk: Nauka, 1988 | MR | Zbl

[4] P. N. Vabischevich, R. V. Gassiev, P. A. Pulatov, “Vychislitelnaya realizatsiya metoda fiktivnykh oblastei dlya ellipticheskikh uravnenii na osnove poperemenno-treugolnogo metoda”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 27(9) (1987), 1381–1387

[5] P. N. Vabischevich, “Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki”, Moskva: URSS, 2016 | MR

[6] A. A. Samarskii, “Teoriya raznostnykh skhem”, Moskva: Nauka, 1989

[7] S. Turovets, V. Volkov, A. Zherdetsky, A. Prakonina, A. D. Malony, “A 3D finite-difference BiCG iterative solver with the Fourier – Jacobi preconditioner for the anisotropic EIT/EEG forward problem”, Computational and Mathematical Methods in Medicine, 2014 (2014), 12 | DOI | MR | Zbl

[8] A. A. Samarskii, V. I. Mazhukin, P. P. Matus, G. I. Shishkin, “Monotonnye raznostnye skhemy dlya uravnenii so smeshannymi proizvodnymi”, Matematicheskoe modelirovanie, 13(2) (2001), 17–26 | Zbl

[9] I. V. Rybak, “Monotone and conservative difference schemes for elliptic equations with mixed derivatives”, Mathematical Modelling and Analysis, 9(2) (2004), 169–178 | DOI | MR | Zbl

[10] V. M. Volkov, E. V. Prokonina, “Raznostnye skhemy i iteratsionnye metody dlya mnogomernykh ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 54(4) (2018), 454–459 | DOI

[11] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, “Templates for the solution of linear systems: building blocks for iterative methods”, Philadelphia: SIAM, 1994, 143 | MR

[12] S. I. Martynenko, “Universalnaya mnogosetochnaya tekhnologiya dlya chislennogo resheniya differentsialnykh uravnenii v chastnykh proizvodnykh na strukturirovannykh setkakh”, Vychislitelnye metody i programmirovanie, 1(1) (2000), 83–102