To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 58-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, computational schemes for solving the Cauchy problem for the singular integro-differential Prandtl equation with a singular integral over a segment of the real axis, understood in the sense of the Cauchy principal value, are constructed and justified. This equation is reduced to equivalent Fredholm equations of the second kind by inversion of the singular integral in three classes of Muskhelishvili functions and applying spectral relations for the singular integral. At the same time, we investigate the conditions for the solvability of integral Fredholm equations of the second kind with a logarithmic kernel of a special form and are approximately solved. The new computational schemes are based on applying the spectral relations for the singular integral to the integral entering into the equivalent equation. Uniform estimates of the errors of approximate solutions are obtained.
Keywords: integro-differential equation; Prandtl equation; numerical solution; method of orthogonal polynomials.
@article{BGUMI_2019_1_a7,
     author = {G. A. Rasolko},
     title = {To the numerical solution of singular integro-differential {Prandtl} equation by the method of orthogonal polynomials},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {58--68},
     publisher = {mathdoc},
     volume = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/}
}
TY  - JOUR
AU  - G. A. Rasolko
TI  - To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 58
EP  - 68
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/
LA  - ru
ID  - BGUMI_2019_1_a7
ER  - 
%0 Journal Article
%A G. A. Rasolko
%T To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 58-68
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/
%G ru
%F BGUMI_2019_1_a7
G. A. Rasolko. To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 58-68. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/

[1] L. Prandtl, “Tragflugeltheorie; Mitteilungen”, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen – Mathematisch-Physikalische Klasse, 1918, 451–477 | Zbl

[2] V. V. Golubev, “Lektsii po teorii kryla”, Moskva: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, 1949, 482

[3] A. I. Kalandiya, “Matematicheskie metody dvumernoi uprugosti”, Moskva: Nauka, 1973 | MR | Zbl

[4] I. N. Vekua, “O integro-differentsialnom uravnenii Prandtlya”, Prikladnaya matematika i mekhanika, 9(2) (1945), 143–150 | Zbl

[5] M. A. Sheshko, G. A. Rasolko, V. S. Mastyanitsa, “K priblizhennomu resheniyu integro-differentsialnogo uravneniya Prandtlya”, Differentsialnye uravneniya, 29(9) (1993), 1550–1560 | Zbl

[6] G. Beitmen, A. Erdeii, “Vysshie transtsendentnye funktsii”, Moskva: Nauka, 1966

[7] S. Pashkovskii, “Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva”, Moskva: Nauka, 1983

[8] N. I. Muskhelishvili, “Singulyarnye integralnye uravneniya”, Moskva: Nauka, 1968

[9] P. K. Suetin, “Klassicheskie ortogonalnye mnogochleny”, Moskva: Nauka, 1979 | Zbl

[10] . Rasolko, “Chislennoe reshenie singulyarnogo integro-differentsialnogo uravneniya Prandtlya metodom ortogonalnykh mnogochlenov”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2018), 68–74 | MR | Zbl