Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_1_a7, author = {G. A. Rasolko}, title = {To the numerical solution of singular integro-differential {Prandtl} equation by the method of orthogonal polynomials}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {58--68}, publisher = {mathdoc}, volume = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/} }
TY - JOUR AU - G. A. Rasolko TI - To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 58 EP - 68 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/ LA - ru ID - BGUMI_2019_1_a7 ER -
%0 Journal Article %A G. A. Rasolko %T To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 58-68 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/ %G ru %F BGUMI_2019_1_a7
G. A. Rasolko. To the numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 58-68. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a7/
[1] L. Prandtl, “Tragflugeltheorie; Mitteilungen”, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen – Mathematisch-Physikalische Klasse, 1918, 451–477 | Zbl
[2] V. V. Golubev, “Lektsii po teorii kryla”, Moskva: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, 1949, 482
[3] A. I. Kalandiya, “Matematicheskie metody dvumernoi uprugosti”, Moskva: Nauka, 1973 | MR | Zbl
[4] I. N. Vekua, “O integro-differentsialnom uravnenii Prandtlya”, Prikladnaya matematika i mekhanika, 9(2) (1945), 143–150 | Zbl
[5] M. A. Sheshko, G. A. Rasolko, V. S. Mastyanitsa, “K priblizhennomu resheniyu integro-differentsialnogo uravneniya Prandtlya”, Differentsialnye uravneniya, 29(9) (1993), 1550–1560 | Zbl
[6] G. Beitmen, A. Erdeii, “Vysshie transtsendentnye funktsii”, Moskva: Nauka, 1966
[7] S. Pashkovskii, “Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva”, Moskva: Nauka, 1983
[8] N. I. Muskhelishvili, “Singulyarnye integralnye uravneniya”, Moskva: Nauka, 1968
[9] P. K. Suetin, “Klassicheskie ortogonalnye mnogochleny”, Moskva: Nauka, 1979 | Zbl
[10] . Rasolko, “Chislennoe reshenie singulyarnogo integro-differentsialnogo uravneniya Prandtlya metodom ortogonalnykh mnogochlenov”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2018), 68–74 | MR | Zbl