Free oscillations of the middle ear after total tympanoplasty and ossiculoplasty with functional mobility of the foot plate of stapes
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Pathological changes in the oscillating system of the middle ear can lead to a decrease of the susceptibility threshold of the auditory analyser to sound vibrations and, consequently, to partial or complete hearing loss. Cartilage implants are most often used for the reconstruction of the tympanic membrane, since they help to avoid complications after treatment. Evaluation of the dynamic characteristics (eigenmodes and eigenfrequencies) of the reconstructed middle ear is the most important problem for analysing the quality of operations that improve the auditory conductivity and develop further recommendations for optimal prosthetics. The aim of this study is to estimate the eigenfrequencies of the middle ear free oscillations after prosthetics on the basis of a mathematical model involving transverse vibrations of the cartilage graft and movement of the prosthesis connecting the reconstructed tympanic membrane and the base of the foot stapes plate. The values of natural frequencies are evaluated for different positions of the nodal lines, averaged geometrical parameters and elastic properties of the tympanic membrane, as well as the foot plate of stapes and prosthesis.
Keywords: middle ear; reconstruction; tympanoplasty; TORP prosthesis; free oscillations; natural frequency.
@article{BGUMI_2019_1_a6,
     author = {S. M. Bosiakov and G. I. Mikhasev},
     title = {Free oscillations of the middle ear after total tympanoplasty and ossiculoplasty with functional mobility of the foot plate of stapes},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a6/}
}
TY  - JOUR
AU  - S. M. Bosiakov
AU  - G. I. Mikhasev
TI  - Free oscillations of the middle ear after total tympanoplasty and ossiculoplasty with functional mobility of the foot plate of stapes
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 46
EP  - 57
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a6/
LA  - ru
ID  - BGUMI_2019_1_a6
ER  - 
%0 Journal Article
%A S. M. Bosiakov
%A G. I. Mikhasev
%T Free oscillations of the middle ear after total tympanoplasty and ossiculoplasty with functional mobility of the foot plate of stapes
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 46-57
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a6/
%G ru
%F BGUMI_2019_1_a6
S. M. Bosiakov; G. I. Mikhasev. Free oscillations of the middle ear after total tympanoplasty and ossiculoplasty with functional mobility of the foot plate of stapes. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 46-57. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a6/

[1] G. Volandri, Puccio. Di, P. Forte, C. Carmignani, “Biomechanics of the tympanic membrane”, Journal of Biomechanics, 44 (2011), 1219–1236 | DOI

[2] H. Beer, M. Bornitz, H. Hardtke, R. Schmidt, G. Hofmann, U. Vogel, “Modeling of components of the human middle ear and simulation of their dynamic behavior”, Audiology and Neurootology, 4 (1999), 156–162 | DOI

[3] D. Murbe, T. Zahnert, M. Bornitz, K. B. Huttenbrink, “Acoustic properties of different cartilage reconstruction techniques of the tympanic membrane”, Laryngoscope, 112 (2002), 1769–1776 | DOI

[4] G. Mikhasev, S. Ermochenko, M. Bornitz, “On the strain-stress state of the reconstructed middle ear after inserting a malleus-incus prosthesis”, Mathematical Medicine and Biology: A Journal of the IMA, 27(4) (2010), 289–312 | DOI | MR | Zbl

[5] J. Zwislocki, “Analysis of the middle ear function”, Journal of Acoustical Society of America. Input Impedance, 34(8) (1962), 1514–1523 | DOI

[6] A. A. Selyaninov, A. M. Yelovikov, T. S. Borodulina, R. M. Podgaets, “Choice of papameters of the stapes prosthesis on the basis of eigenfrequencies at the stapedioplasty operation”, Russian Journal of Biomechanics, 13(4) (2009), 40–50

[7] F. Zhao, T. Koike, J. Wang, H. Sienz, R. h. Meredith, “Finite-element analysis of the middle ear transfer functions and related pathologies”, Medical Engineering and Physics, 31(8) (2009), 907–916 | DOI

[8] R. Z. Gan, B. Feng, Q. Sun, “Three-dimensional finite element modeling of human ear for sound transmission”, Annals of Biomedical Engineering, 32 (2004), 847–859 | DOI

[9] T. Koike, H. Wada, T. Kobayashi, “Modeling of the human middle ear using the finite-element method”, Journal of the Acoustical Society of America, 111(3) (2002), 1306–1317 | DOI

[10] C. F. Lee, P. R. Chen, W. J. Lee, J. H. Chen, T. C. Liu, “Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis”, Laryngoscope, 116 (2006), 711–716 | DOI | MR

[11] Q. Sun, K. H. Chang, K. J. Dormer, RKJr. Dyer, R. Z. Gan, “An advanced computer-aided geometric modeling and fabrication method for human middle ear”, Medical Engineering and Physics, 24(9) (2002), 595–605 | DOI

[12] E. G. Wever, M. Lawrence, “Physiological acoustics”, Princeton: Princeton University Press, 1982, 454