Sequential probability ratio test for many simple hypotheses on parameters of time series with trend
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of sequential test for many simple hypotheses on parameters of time series with trend is considered. Two approaches, including M-ary sequential probability ratio test and matrix sequential probability ratio test are used for constructing the sequential test. The sufficient conditions of finite terminations of the test and the existence of finite moments of their stopping times are given. The upper bounds for the average numbers of observations are obtained. With the thresholds chosen suitably, these tests can belong to some specified classes of statistical tests. Numerical examples are presented.
Keywords: multiple hypothesis testing; M-ary sequential probability ratio test; matrix sequential probability ratio test; time series with trend.
@article{BGUMI_2019_1_a5,
     author = {T. T. Tu and A. J. Kharin},
     title = {Sequential probability ratio test for many simple hypotheses on parameters of time series with trend},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {35--45},
     publisher = {mathdoc},
     volume = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/}
}
TY  - JOUR
AU  - T. T. Tu
AU  - A. J. Kharin
TI  - Sequential probability ratio test for many simple hypotheses on parameters of time series with trend
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 35
EP  - 45
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/
LA  - en
ID  - BGUMI_2019_1_a5
ER  - 
%0 Journal Article
%A T. T. Tu
%A A. J. Kharin
%T Sequential probability ratio test for many simple hypotheses on parameters of time series with trend
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 35-45
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/
%G en
%F BGUMI_2019_1_a5
T. T. Tu; A. J. Kharin. Sequential probability ratio test for many simple hypotheses on parameters of time series with trend. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 35-45. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/

[1] A. Wald, “Sequential analysis”, New York: John Wiley and Sons, 1947 | MR | Zbl

[2] S. A. Aivazyan, “Sravnenie optimalnykh svoistv kriteriev Neimana – Pirsona i Valda”, Teoriya veroyatnostei i ee primeneniya, 4(1) (1959), 86–93 | MR | Zbl

[3] A. Yu. Kharin, “Robastnost baiesovskikh i posledovatelnykh statisticheskikh reshayuschikh pravil”, Minsk: BGU, 2013

[4] A. Yu. Kharin, “Ob odnom podkhode k analizu posledovatelnogo kriteriya otnosheniya pravdopodobiya dlya razlicheniya prostykh gipotez”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2002), 92–96 | Zbl

[5] A. Tartakovsky, I. Nikiforov, M. Basseville, “Sequential analysis: hypothesis testing and changepoint detection”, Boca Raton: CRC Press, 2015 | MR | Zbl

[6] A. Kharin, “Performance and robustness evaluation in sequential hypotheses testing. Communications in Statistics”, Theory and Methods, 45(6) (2016), 1693–1709 | DOI | MR | Zbl

[7] AYu. Kharin, “Robustness of sequential testing of hypotheses on parameters of M-valued random sequences”, Journal of Mathematical Sciences, 189(6) (2013), 924?–931 | DOI | MR

[8] M. Sobel, A. Wald, “A sequential design procedure for choosing one of three hypotheses concerning the unknown mean of normal distribution”, Annals of Mathematical Statistics, 20 (1949), 502–522 | DOI | MR | Zbl

[9] A. G. Tartakovskii, “Sequential testing of many simple hypotheses with independent observations”, Problems of Information Transmission, 24(4) (1989), 299–309 | MR

[10] P. Armitage, “Sequential analysis with more than two alternative hypotheses and its relation to discriminant function analysis”, Journal of the Royal Statistical Society, 9 (1947), 250–263 | MR | Zbl

[11] C. W. Baum, V. V. Veeravalli, “A sequential procedure for multihypothesis testing”, IEEE Transactions on Information Theory, 40(6) (1994), 1994–2007 | DOI | MR | Zbl

[12] A. Yu. Kharin, T. T. Tu, “Posledovatelnaya statisticheskaya proverka gipotez o parametrakh vremennykh ryadov s trendom pri propuskakh nablyudenii”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 3 (2016), 38–46

[13] A. Yu. Kharin, T. T. Tu, “O vychislenii veroyatnostei oshibok usechennogo posledovatelnogo kriteriya otnosheniya veroyatnostei”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2018), 68–76 | Zbl

[14] A. Kharin, That. Ton, “Performance and robustness analysis of sequential hypotheses testing for time series with trend”, Austrian Journal of Statistics, 46(3–4) (2017), 23–36 | DOI | MR

[15] T. Anderson, “Statisticheskii analiz vremennykh ryadov”, Moskva: Mir, 1976

[16] I. D. Coope, “On matrix trace inequalities and related topics for products of Hermitian matrices”, Journal of Mathematical Analysis and Applications, 188 (1994), 999–1001 | DOI | MR | Zbl

[17] A. Gut, “Probability: A Graduate Course”, New York: Springer-Verlag, 2005 | MR