Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_1_a5, author = {T. T. Tu and A. J. Kharin}, title = {Sequential probability ratio test for many simple hypotheses on parameters of time series with trend}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {35--45}, publisher = {mathdoc}, volume = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/} }
TY - JOUR AU - T. T. Tu AU - A. J. Kharin TI - Sequential probability ratio test for many simple hypotheses on parameters of time series with trend JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 35 EP - 45 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/ LA - en ID - BGUMI_2019_1_a5 ER -
%0 Journal Article %A T. T. Tu %A A. J. Kharin %T Sequential probability ratio test for many simple hypotheses on parameters of time series with trend %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 35-45 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/ %G en %F BGUMI_2019_1_a5
T. T. Tu; A. J. Kharin. Sequential probability ratio test for many simple hypotheses on parameters of time series with trend. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 35-45. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a5/
[1] A. Wald, “Sequential analysis”, New York: John Wiley and Sons, 1947 | MR | Zbl
[2] S. A. Aivazyan, “Sravnenie optimalnykh svoistv kriteriev Neimana – Pirsona i Valda”, Teoriya veroyatnostei i ee primeneniya, 4(1) (1959), 86–93 | MR | Zbl
[3] A. Yu. Kharin, “Robastnost baiesovskikh i posledovatelnykh statisticheskikh reshayuschikh pravil”, Minsk: BGU, 2013
[4] A. Yu. Kharin, “Ob odnom podkhode k analizu posledovatelnogo kriteriya otnosheniya pravdopodobiya dlya razlicheniya prostykh gipotez”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2002), 92–96 | Zbl
[5] A. Tartakovsky, I. Nikiforov, M. Basseville, “Sequential analysis: hypothesis testing and changepoint detection”, Boca Raton: CRC Press, 2015 | MR | Zbl
[6] A. Kharin, “Performance and robustness evaluation in sequential hypotheses testing. Communications in Statistics”, Theory and Methods, 45(6) (2016), 1693–1709 | DOI | MR | Zbl
[7] AYu. Kharin, “Robustness of sequential testing of hypotheses on parameters of M-valued random sequences”, Journal of Mathematical Sciences, 189(6) (2013), 924?–931 | DOI | MR
[8] M. Sobel, A. Wald, “A sequential design procedure for choosing one of three hypotheses concerning the unknown mean of normal distribution”, Annals of Mathematical Statistics, 20 (1949), 502–522 | DOI | MR | Zbl
[9] A. G. Tartakovskii, “Sequential testing of many simple hypotheses with independent observations”, Problems of Information Transmission, 24(4) (1989), 299–309 | MR
[10] P. Armitage, “Sequential analysis with more than two alternative hypotheses and its relation to discriminant function analysis”, Journal of the Royal Statistical Society, 9 (1947), 250–263 | MR | Zbl
[11] C. W. Baum, V. V. Veeravalli, “A sequential procedure for multihypothesis testing”, IEEE Transactions on Information Theory, 40(6) (1994), 1994–2007 | DOI | MR | Zbl
[12] A. Yu. Kharin, T. T. Tu, “Posledovatelnaya statisticheskaya proverka gipotez o parametrakh vremennykh ryadov s trendom pri propuskakh nablyudenii”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 3 (2016), 38–46
[13] A. Yu. Kharin, T. T. Tu, “O vychislenii veroyatnostei oshibok usechennogo posledovatelnogo kriteriya otnosheniya veroyatnostei”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2018), 68–76 | Zbl
[14] A. Kharin, That. Ton, “Performance and robustness analysis of sequential hypotheses testing for time series with trend”, Austrian Journal of Statistics, 46(3–4) (2017), 23–36 | DOI | MR
[15] T. Anderson, “Statisticheskii analiz vremennykh ryadov”, Moskva: Mir, 1976
[16] I. D. Coope, “On matrix trace inequalities and related topics for products of Hermitian matrices”, Journal of Mathematical Analysis and Applications, 188 (1994), 999–1001 | DOI | MR | Zbl
[17] A. Gut, “Probability: A Graduate Course”, New York: Springer-Verlag, 2005 | MR