Counting algebraic numbers in short intervals with rational points
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 4-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2012 it was proved that real algebraic numbers follow a non-uniform but regular distribution, where the respective definitions go back to H. Weyl (1916) and A. Baker and W. Schmidt (1970). The largest deviations from the uniform distribution occur in neighborhoods of rational numbers with small denominators. In this article the authors are first to specify a general condition that guarantees the presence of a large quantity of real algebraic numbers in a small interval. Under this condition, the distribution of real algebraic numbers attains even stronger regularity properties, indicating that there is a chance of proving Wirsing’s conjecture on approximation of real numbers by algebraic numbers and algebraic integers.
Keywords: algebraic number; Diophantine approximation; uniform distribution; Dirichlet's theorem; Khinchine's theorem.
@article{BGUMI_2019_1_a0,
     author = {V. I. Bernik and F. G\"otze and N. I. Kalosha},
     title = {Counting algebraic numbers in short intervals with rational points},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {4--11},
     publisher = {mathdoc},
     volume = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - F. Götze
AU  - N. I. Kalosha
TI  - Counting algebraic numbers in short intervals with rational points
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 4
EP  - 11
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/
LA  - en
ID  - BGUMI_2019_1_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A F. Götze
%A N. I. Kalosha
%T Counting algebraic numbers in short intervals with rational points
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 4-11
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/
%G en
%F BGUMI_2019_1_a0
V. I. Bernik; F. Götze; N. I. Kalosha. Counting algebraic numbers in short intervals with rational points. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/

[1] H. Weyl, “Uber die Gleichverteilung von Zahlen mod Eins”, Mathematische Annalen, 77(3) (1916), 313–352 | DOI | MR | Zbl

[2] L. Kuipers, H. Niederreiter, “Uniform distribution of sequences”, New York: Wiley, 1974, 390 | MR | Zbl

[3] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proceedings of the London Mathematical Society, 21 (1970), 1–11 | DOI | MR | Zbl

[4] V. I. Bernik, “Application of the Hausdorff dimension in the theory of Diophantine approximations”, American Mathematical Society Translations, 40 (1988), 15–44 | DOI | MR

[5] A. Khintchine, “Einige satze uber kettenbruche, mit anwendungen auf die theorie der Diophantischen approximationen”, Mathematische Annalen, 92(1–2) (1924), 115–125 | DOI | MR | Zbl

[6] V. I. Bernik, “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53(1) (1989), 17–28 | DOI | Zbl

[7] V. I. Bernik, M. M. Dodson, “Metric Diophantine Approximation on Manifolds”, 137, Cambridge: Cambridge University Press, 1999, 172 | MR | Zbl

[8] V. V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 94(1–2) (2002), 99–130 | DOI | MR | Zbl

[9] V. I. Bernik, D. Kleinbock, G. A. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 9 (2001), 453–486 | DOI | MR | Zbl

[10] V. V. Beresnevich, V. I. Bernik, D. Kleinbock, G. A. Margulis, “Metric Diophantine approximation: The Khintchine – Groshev theorem for nondegenerate manifolds”, Moscow Mathematical Journal, 2(2) (2002), 203–225 | DOI | MR | Zbl

[11] V. I. Bernik, F. Gotze, “Distribution of real algebraic numbers of arbitrary degree in short intervals”, 79(1), Izvestiya: Mathematics, 2015, 18–39 | DOI | MR | Zbl

[12] D. U. Kalyada, “Ab razmerkavanni rechaisnykh algebraichnykh likau dadzenai stupeni”, Doklady Natsionalnoi akademii nauk Belarusi, 56(3) (2012), 28–33 | MR | Zbl

[13] Y. Bugeaud, “Approximation by Algebraic Numbers”, 160, Cambridge: Cambridge University Press, 2004, 290 | DOI | MR

[14] V. I. Bernik, F. Gotze, A. G. Gusakova, “On points with algebraically conjugate coordinates close to smooth curves”, Moscow Journal of Combinatorics and Number Theory, 6(2–3) (2016), 57–100 | MR

[15] JWS. Cassels, “An Introduction to Diophantine Approximation”, 45, Cambridge: Cambridge University Press, 1957, 168 | MR

[16] V. G. Sprindzhuk, “Problema Malera v metricheskoi teorii chisel”, Minsk: Nauka i tekhnika, 1967, 184 | MR