Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2019_1_a0, author = {V. I. Bernik and F. G\"otze and N. I. Kalosha}, title = {Counting algebraic numbers in short intervals with rational points}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {4--11}, publisher = {mathdoc}, volume = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/} }
TY - JOUR AU - V. I. Bernik AU - F. Götze AU - N. I. Kalosha TI - Counting algebraic numbers in short intervals with rational points JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2019 SP - 4 EP - 11 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/ LA - en ID - BGUMI_2019_1_a0 ER -
%0 Journal Article %A V. I. Bernik %A F. Götze %A N. I. Kalosha %T Counting algebraic numbers in short intervals with rational points %J Journal of the Belarusian State University. Mathematics and Informatics %D 2019 %P 4-11 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/ %G en %F BGUMI_2019_1_a0
V. I. Bernik; F. Götze; N. I. Kalosha. Counting algebraic numbers in short intervals with rational points. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/
[1] H. Weyl, “Uber die Gleichverteilung von Zahlen mod Eins”, Mathematische Annalen, 77(3) (1916), 313–352 | DOI | MR | Zbl
[2] L. Kuipers, H. Niederreiter, “Uniform distribution of sequences”, New York: Wiley, 1974, 390 | MR | Zbl
[3] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proceedings of the London Mathematical Society, 21 (1970), 1–11 | DOI | MR | Zbl
[4] V. I. Bernik, “Application of the Hausdorff dimension in the theory of Diophantine approximations”, American Mathematical Society Translations, 40 (1988), 15–44 | DOI | MR
[5] A. Khintchine, “Einige satze uber kettenbruche, mit anwendungen auf die theorie der Diophantischen approximationen”, Mathematische Annalen, 92(1–2) (1924), 115–125 | DOI | MR | Zbl
[6] V. I. Bernik, “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53(1) (1989), 17–28 | DOI | Zbl
[7] V. I. Bernik, M. M. Dodson, “Metric Diophantine Approximation on Manifolds”, 137, Cambridge: Cambridge University Press, 1999, 172 | MR | Zbl
[8] V. V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 94(1–2) (2002), 99–130 | DOI | MR | Zbl
[9] V. I. Bernik, D. Kleinbock, G. A. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 9 (2001), 453–486 | DOI | MR | Zbl
[10] V. V. Beresnevich, V. I. Bernik, D. Kleinbock, G. A. Margulis, “Metric Diophantine approximation: The Khintchine – Groshev theorem for nondegenerate manifolds”, Moscow Mathematical Journal, 2(2) (2002), 203–225 | DOI | MR | Zbl
[11] V. I. Bernik, F. Gotze, “Distribution of real algebraic numbers of arbitrary degree in short intervals”, 79(1), Izvestiya: Mathematics, 2015, 18–39 | DOI | MR | Zbl
[12] D. U. Kalyada, “Ab razmerkavanni rechaisnykh algebraichnykh likau dadzenai stupeni”, Doklady Natsionalnoi akademii nauk Belarusi, 56(3) (2012), 28–33 | MR | Zbl
[13] Y. Bugeaud, “Approximation by Algebraic Numbers”, 160, Cambridge: Cambridge University Press, 2004, 290 | DOI | MR
[14] V. I. Bernik, F. Gotze, A. G. Gusakova, “On points with algebraically conjugate coordinates close to smooth curves”, Moscow Journal of Combinatorics and Number Theory, 6(2–3) (2016), 57–100 | MR
[15] JWS. Cassels, “An Introduction to Diophantine Approximation”, 45, Cambridge: Cambridge University Press, 1957, 168 | MR
[16] V. G. Sprindzhuk, “Problema Malera v metricheskoi teorii chisel”, Minsk: Nauka i tekhnika, 1967, 184 | MR