Counting algebraic numbers in short intervals with rational points
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 4-11

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2012 it was proved that real algebraic numbers follow a non-uniform but regular distribution, where the respective definitions go back to H. Weyl (1916) and A. Baker and W. Schmidt (1970). The largest deviations from the uniform distribution occur in neighborhoods of rational numbers with small denominators. In this article the authors are first to specify a general condition that guarantees the presence of a large quantity of real algebraic numbers in a small interval. Under this condition, the distribution of real algebraic numbers attains even stronger regularity properties, indicating that there is a chance of proving Wirsing’s conjecture on approximation of real numbers by algebraic numbers and algebraic integers.
Keywords: algebraic number; Diophantine approximation; uniform distribution; Dirichlet's theorem; Khinchine's theorem.
@article{BGUMI_2019_1_a0,
     author = {V. I. Bernik and F. G\"otze and N. I. Kalosha},
     title = {Counting algebraic numbers in short intervals with rational points},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {4--11},
     publisher = {mathdoc},
     volume = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - F. Götze
AU  - N. I. Kalosha
TI  - Counting algebraic numbers in short intervals with rational points
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2019
SP  - 4
EP  - 11
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/
LA  - en
ID  - BGUMI_2019_1_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A F. Götze
%A N. I. Kalosha
%T Counting algebraic numbers in short intervals with rational points
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2019
%P 4-11
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/
%G en
%F BGUMI_2019_1_a0
V. I. Bernik; F. Götze; N. I. Kalosha. Counting algebraic numbers in short intervals with rational points. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2019), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2019_1_a0/