Chebyshev spectral method for numerical simulations of counter-propagating optical waves interaction in nonlinear media
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Chebyshev spectral methods for two-point boundary value problems describing the processes of counter interaction of optical waves in media with cubic nonlinearity and linear media with periodic modulation of the refractive index are considered. On the example of a linear problem, it is shown that the spectral method for achieving a given accuracy requires of two-three orders less time in comparison with the spline collocation method of the $5^{th}$ accuracy order. Moreover, Chebyshev mesh has natural adaptive properties for the considered problems of the nonlinear interaction of optical waves. A conservative iterative algorithm for implementation of the nonlinear spectral model is proposed. The proposed method has a lower sensitivity to the choice of an appropriate initial guess and provides a higher rate of convergence in comparison with Newton’s method under conditions of strong coupling of interacting waves.
Keywords: Chebyshev spectral methods; two-point boundary value problem; nonlinear interaction of counter-propagating optical waves; Newton’s method; conservative iterative method.
@article{BGUMI_2018_3_a8,
     author = {Yu. V. Buyalskaya and V. M. Volkov},
     title = {Chebyshev spectral method for numerical simulations of counter-propagating optical waves interaction in nonlinear media},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a8/}
}
TY  - JOUR
AU  - Yu. V. Buyalskaya
AU  - V. M. Volkov
TI  - Chebyshev spectral method for numerical simulations of counter-propagating optical waves interaction in nonlinear media
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 75
EP  - 81
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a8/
LA  - ru
ID  - BGUMI_2018_3_a8
ER  - 
%0 Journal Article
%A Yu. V. Buyalskaya
%A V. M. Volkov
%T Chebyshev spectral method for numerical simulations of counter-propagating optical waves interaction in nonlinear media
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 75-81
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a8/
%G ru
%F BGUMI_2018_3_a8
Yu. V. Buyalskaya; V. M. Volkov. Chebyshev spectral method for numerical simulations of counter-propagating optical waves interaction in nonlinear media. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 75-81. http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a8/

[1] C. Headley, G. P. Agrawal, “Raman amplification in fiber optical communication systems”, San Diego: Academic Press, 2005

[2] V. E. Perlin, H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers”, Journal of lightwave technology, 20(2) (2002), 250–254 | DOI

[3] Yu. N. Karamzin, A. P. Sukhorukov, Yu. N. Trofimov, “Matematicheskoe modelirovanie v nelineinoi optike”, Moskva: MGU, 1989 | MR | Zbl

[4] Gokhan. Serdar, G. Yilmaz, “Solution of Raman fiber amplifier equations using MATLAB BVP solvers”, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, 30(2) (2011), 398–411 | DOI | Zbl

[5] X. Liu, M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations”, Optics communications, 235(1) (2004), 75–82 | DOI

[6] H. I. Tarman, H. Berberoglu, “A spectral collocation algorithm for two-point boundary value problem in fiber Raman amplifier equations”, Optics Communications, 282(8) (2009), 1551–1556 | DOI

[7] M. B. Vinogradova, A. P. Sukhorukov, O. V. Rudenko, “Teoriya voln”, Moskva: Nauka, 1979

[8] L. N. Trefethen, “Spectral Methods in MATLAB”, Philadelphia: SIAM, 2000 | MR

[9] J. A. Weideman, S. C. Reddy, “A MATLAB differentiation matrix suite”, ACM Transactions on Mathematical Software (TOMS), 26(4) (2000), 465–519 | DOI | MR

[10] J. P. Boyd, “Chebyshev and Fourier spectral methods”, New York: DOVER Publications, 2000 | MR | Zbl

[11] L. F. Shampine, I. Gladwell, S. Thompson, “Solving ODEs with Matlab”, New York: Cambridge University Press, 2003 | MR

[12] V. M. Volkov, “Iteratsionnye metody resheniya statsionarnykh zadach vstrechnogo vzaimodeistviya opticheskikh voln v nelineinykh sredakh”, Differentsialnye uravneniya, 34(7) (1998), 935–941 | Zbl