On continuous solutions of the Cauchy problem for equations of fractional order
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is studied the nonlocal conditions of solving Cauchy-type problem for fractional differential equations with Riemann – Liouville derivatives in some special function space. The Cauchy problem is reduced to a the finding fixed point of an integral operator A, then is constructed an invariant set for $A$ (the «shift» of a ball from the space of continuous functions, and then it is applied the Schauder anf Banach – Caccioppoli fixed point principles. As a result, the conditions of solvability and unique solvability for the Cauchy problem under consideration are given.
Keywords: Cauchy problem; fractional Riemann – Liouville derivative; the Schauder fixed point principle; the Banach – Сaccioppoli fixed point principle.
@article{BGUMI_2018_3_a4,
     author = {P. P. Zabreiko and S. Ponomareva},
     title = {On continuous solutions of the {Cauchy} problem for equations of fractional order},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a4/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - S. Ponomareva
TI  - On continuous solutions of the Cauchy problem for equations of fractional order
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 39
EP  - 45
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a4/
LA  - ru
ID  - BGUMI_2018_3_a4
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A S. Ponomareva
%T On continuous solutions of the Cauchy problem for equations of fractional order
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 39-45
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a4/
%G ru
%F BGUMI_2018_3_a4
P. P. Zabreiko; S. Ponomareva. On continuous solutions of the Cauchy problem for equations of fractional order. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 39-45. http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a4/

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies 204, 2006, 523, New York: Elsevier science | MR

[2] R. Gorenflo, F. Mainardi, “Fractional calculus: integral and differential equations of fractional order”, Fractal and Fractional Calculus in Continuum Mehanics (Udine, 1996). CISM Courses and Lectures, 378 (1997), 223–276 | DOI | MR | Zbl

[3] A. A. Kilbas, “New trends on fractional integral and differential equations”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 147(1) (2005), 72–106 | Zbl

[4] P. P. Zabreiko, S. V. Ponomareva, “O razreshimosti zadachi Koshi dlya uravnenii s drobnymi proizvodnymi Rimana – Liuvillya”, Doklady Natsionalnoi akademii nauk Belarusi, 62(4) (2018), 391–397 | DOI

[5] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, “Integralnye operatory v prostranstvakh summiruemykh funktsii”, Moskva: Nauka, 1966, 500 | MR

[6] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovschik, V. Ya. Stetsenko, “Integralnye uravneniya”, Moskva: Nauka, 1968, 448 | Zbl

[7] P. P. Zabreiko, “Ob integralnykh operatorakh Volterra”, Uspekhi matematicheskikh nauk, 22(1) (1967), 167–168 | MR

[8] P. P. Zabreiko, “O spektralnom radiuse integralnykh operatorov Volterra”, Litovskii matematicheskii sbornik, 2 (1967), 281–287 | MR