On a Lebesgue constant of interpolation rational process at the Chebyshev – Markov nodes
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 12-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper estimate of a Lebesgue constant of the interpolation rational Lagrange process on the segment $[-1,1]$, at the Chebyshev – Markov cosine fractions nodes is considered. It is shown that in the case of two real geometrically distinct poles of approximating functions, the norms of the Lagrange fundamental polynomials are bounded. Based on this result, it is proved that in the case under consideration the upper estimate of the Lebesgue constant does not depend on the arrangement of the poles and the sequence of the Lebesgue constant grows with logarithmic rate. Note, that in previous works the estimates of Lebesgue constants were obtained only for particular choices of poles or depended on the arrangement of poles.
Mots-clés : rational approximation; interpolation; Chebyshev – Markov fraction; Lebesgue constant.
@article{BGUMI_2018_3_a1,
     author = {Y. A. Rovba and K. A. Smotritskii and E. V. Dirvuk},
     title = {On a {Lebesgue} constant of interpolation rational process at the {Chebyshev} {\textendash} {Markov} nodes},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {12--20},
     publisher = {mathdoc},
     volume = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a1/}
}
TY  - JOUR
AU  - Y. A. Rovba
AU  - K. A. Smotritskii
AU  - E. V. Dirvuk
TI  - On a Lebesgue constant of interpolation rational process at the Chebyshev – Markov nodes
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 12
EP  - 20
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a1/
LA  - en
ID  - BGUMI_2018_3_a1
ER  - 
%0 Journal Article
%A Y. A. Rovba
%A K. A. Smotritskii
%A E. V. Dirvuk
%T On a Lebesgue constant of interpolation rational process at the Chebyshev – Markov nodes
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 12-20
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a1/
%G en
%F BGUMI_2018_3_a1
Y. A. Rovba; K. A. Smotritskii; E. V. Dirvuk. On a Lebesgue constant of interpolation rational process at the Chebyshev – Markov nodes. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 12-20. http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a1/

[1] A. A. Privalov, “Teoriya interpolirovaniya funktsii”, Saratov: Izdatelstvo Saratovskogo universiteta, 1990, 229

[2] V. K. Dzyadyk, “Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami”, Moskva: Nauka, 1977, 511 | MR | Zbl

[3] V. N. Rusak, “Ob interpolirovanii ratsionalnymi funktsiyami s fiksirovannymi polyusami”, Doklady Akademii nauk Belorusskoi SSR, 4(9) (1962), 548–550

[4] A. P. Starovoitov, “O ratsionalnoi interpolyatsii s fiksirovannymi polyusami”, Izvestiya AN BSSR. Seriya fizikomatematicheskikh nauk, 6 (1983), 105–106

[5] E. A. Rovba, E. V. Dirvuk, “O konstante Lebega interpolyatsionnykh ratsionalnykh protsessov Lagranzha po uzlam Chebysheva – Markova”, Izvestiya NAN Belarusi. Seriya fiziko-matematicheskikh nauk, 4 (2015), 32–38

[6] E. A. Rovba, N. Yu. Kozlovskaya, “K voprosu ob otsenke konstanty Lebega interpolyatsionnogo ratsionalnogo protsessa s uzlami Chebysheva – Markova”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly, 6(3) (2016), 6–11

[7] I. P. Natanson, “Konstruktivnaya teoriya funktsii”, Moskva, Leningrad: Gostekhizdat, 1949, 688 | MR | Zbl