Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 4-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical Lebesgue theorem states that for any integrable function almost every point (except the set of measure zero) is a Lebesgue point. The set of the points that are not Lebesgue points is called an exceptional set. One can estimate the «size» of the exceptional set for more regular functions (e. g. functions that belong to certain function space) using more refined than measure characteristics. The paper is devoted to the investigation of the properties of Lebesgue points for functions from Sobolev classes on general metric space in the critical case $\gamma=\alpha p$, $\gamma$ plays the role of the dimension of the space, $\alpha, p$ – smoothness and summability parameters. Estimates of the «size» of the exceptional set in terms of capacities and Hausdorff dimension are obtained. Exponential rate of convergence for Lebesgue points has been established. Similar results are known in subcritical case $\gamma>\alpha p$ as well.
Keywords: analysis on metric measure spaces; Sobolev spaces; fine properties of functions; Lebesgue points.
@article{BGUMI_2018_3_a0,
     author = {S. A. Bondarev},
     title = {Lebesgue points for functions from generalized {Sobolev} classes $M_{\alpha}^{p}(X)$ in the critical case},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {4--11},
     publisher = {mathdoc},
     volume = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/}
}
TY  - JOUR
AU  - S. A. Bondarev
TI  - Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 4
EP  - 11
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/
LA  - ru
ID  - BGUMI_2018_3_a0
ER  - 
%0 Journal Article
%A S. A. Bondarev
%T Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 4-11
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/
%G ru
%F BGUMI_2018_3_a0
S. A. Bondarev. Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/

[1] I. Stein, “Singulyarnye integraly i differentsialnye svoistva funktsii”, Moskva: Mir, 1973, 342

[2] H. Federer, W. Ziemer, “The Lebesgue sets of a function whose distribution derivatives are p-th power summable”, Indiana University Mathematics Journal, 22(2) (1973), 139–158 | DOI | MR

[3] T. Bagby, W. P. Ziemer, “Pointwise differentiability and absolute continuity”, Transactions of the American Mathematical Society, 191 (1974), 129–148 | DOI | MR | Zbl

[4] C. P. Calderon, E. B. Fabes, N. M. Riviere, “Maximal smoothing operators”, Indiana University Mathematics Journal, 23 (1974), 889–898 | DOI | MR | Zbl

[5] N. G. Meyers, “Taylor expansion of Bessel potentials”, Indiana University Mathematics Journal, 23 (1974), 1043–1049 | DOI | MR | Zbl

[6] P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Analysis, 5(4) (1996), 403–415 | DOI | MR | Zbl

[7] P. Hajlasz, J. Kinnunen, “Holder quasicontinuity of Sobolev functions on metric spaces”, Revista Matematica Iberoamericana, 14(3) (1998), 601–622 | DOI | MR | Zbl

[8] J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Revista Matematica Iberoamericana, 18(3) (2002), 685–700 | DOI | MR | Zbl

[9] M. A. Prokhorovich, “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha – Soboleva na metricheskikh prostranstvakh s meroi”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 1 (2006), 19–23 | MR

[10] M. A. Prokhorovich, “Mery Khausdorfa i tochki Lebega dlya klassov Soboleva, a > 0, na prostranstvakh odnorodnogo tipa”, Matematicheskie zametki, 85(4) (2009), 616–621 | DOI | MR | Zbl

[11] S. A. Bondarev, V. G. Krotov, “Fine properties of Functions from Hajlasz – Sobolev classes M (in exp. p, with index alpha), p > 0. Lebesgue points”, Journal of Contemporary Mathematical Analysis, 51(6) (2016), 282–295 | DOI | MR | Zbl

[12] S. A. Bondarev, V. G. Krotov, “Fine properties of Functions from Hajlasz – Sobolev classes M (in exp. p, with index alpha), p > 0. Lusin’s approximation”, Journal of Contemporary Mathematical Analysis, 52(1) (2017), 30–37 | DOI | MR | Zbl

[13] D. Yang, “New characterization of Hajlasz – Sobolev spaces on metric spaces”, Science in China. Mathematics, 46(5) (2003), 675–689 | DOI | MR | Zbl

[14] V. G. Krotov, A. I. Porabkovich, “Otsenki L (in exp. p)-ostsillyatsii funktsii pri p > 0”, Matematicheskie zametki, 97(3) (2015), 407–420 | DOI | Zbl

[15] J. Kinnunen, O. Martio, “The Sobolev capacity on metric spaces”, Annales Academia Scientiarum Fennice Mathematica, 21 (1996), 367–382 | MR | Zbl

[16] J. Heinonen, “Lectures on analysis on metric spaces”, Berlin: Springer-Verlag, 2001, 141 | MR

[17] A. I. Porabkovich, “Samouluchshenie L (in exp. p)-neravenstva Puankare pri p > 0”, Chebyshevskii sbornik, 17(1-57) (2016), 187–200 | MR | Zbl