Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_3_a0, author = {S. A. Bondarev}, title = {Lebesgue points for functions from generalized {Sobolev} classes $M_{\alpha}^{p}(X)$ in the critical case}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {4--11}, publisher = {mathdoc}, volume = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/} }
TY - JOUR AU - S. A. Bondarev TI - Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 4 EP - 11 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/ LA - ru ID - BGUMI_2018_3_a0 ER -
%0 Journal Article %A S. A. Bondarev %T Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 4-11 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/ %G ru %F BGUMI_2018_3_a0
S. A. Bondarev. Lebesgue points for functions from generalized Sobolev classes $M_{\alpha}^{p}(X)$ in the critical case. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a0/
[1] I. Stein, “Singulyarnye integraly i differentsialnye svoistva funktsii”, Moskva: Mir, 1973, 342
[2] H. Federer, W. Ziemer, “The Lebesgue sets of a function whose distribution derivatives are p-th power summable”, Indiana University Mathematics Journal, 22(2) (1973), 139–158 | DOI | MR
[3] T. Bagby, W. P. Ziemer, “Pointwise differentiability and absolute continuity”, Transactions of the American Mathematical Society, 191 (1974), 129–148 | DOI | MR | Zbl
[4] C. P. Calderon, E. B. Fabes, N. M. Riviere, “Maximal smoothing operators”, Indiana University Mathematics Journal, 23 (1974), 889–898 | DOI | MR | Zbl
[5] N. G. Meyers, “Taylor expansion of Bessel potentials”, Indiana University Mathematics Journal, 23 (1974), 1043–1049 | DOI | MR | Zbl
[6] P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Analysis, 5(4) (1996), 403–415 | DOI | MR | Zbl
[7] P. Hajlasz, J. Kinnunen, “Holder quasicontinuity of Sobolev functions on metric spaces”, Revista Matematica Iberoamericana, 14(3) (1998), 601–622 | DOI | MR | Zbl
[8] J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Revista Matematica Iberoamericana, 18(3) (2002), 685–700 | DOI | MR | Zbl
[9] M. A. Prokhorovich, “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha – Soboleva na metricheskikh prostranstvakh s meroi”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 1 (2006), 19–23 | MR
[10] M. A. Prokhorovich, “Mery Khausdorfa i tochki Lebega dlya klassov Soboleva, a > 0, na prostranstvakh odnorodnogo tipa”, Matematicheskie zametki, 85(4) (2009), 616–621 | DOI | MR | Zbl
[11] S. A. Bondarev, V. G. Krotov, “Fine properties of Functions from Hajlasz – Sobolev classes M (in exp. p, with index alpha), p > 0. Lebesgue points”, Journal of Contemporary Mathematical Analysis, 51(6) (2016), 282–295 | DOI | MR | Zbl
[12] S. A. Bondarev, V. G. Krotov, “Fine properties of Functions from Hajlasz – Sobolev classes M (in exp. p, with index alpha), p > 0. Lusin’s approximation”, Journal of Contemporary Mathematical Analysis, 52(1) (2017), 30–37 | DOI | MR | Zbl
[13] D. Yang, “New characterization of Hajlasz – Sobolev spaces on metric spaces”, Science in China. Mathematics, 46(5) (2003), 675–689 | DOI | MR | Zbl
[14] V. G. Krotov, A. I. Porabkovich, “Otsenki L (in exp. p)-ostsillyatsii funktsii pri p > 0”, Matematicheskie zametki, 97(3) (2015), 407–420 | DOI | Zbl
[15] J. Kinnunen, O. Martio, “The Sobolev capacity on metric spaces”, Annales Academia Scientiarum Fennice Mathematica, 21 (1996), 367–382 | MR | Zbl
[16] J. Heinonen, “Lectures on analysis on metric spaces”, Berlin: Springer-Verlag, 2001, 141 | MR
[17] A. I. Porabkovich, “Samouluchshenie L (in exp. p)-neravenstva Puankare pri p > 0”, Chebyshevskii sbornik, 17(1-57) (2016), 187–200 | MR | Zbl