Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_2_a5, author = {M. K. Dauhaliova and Yu. S. Kharin}, title = {Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {47--57}, publisher = {mathdoc}, volume = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/} }
TY - JOUR AU - M. K. Dauhaliova AU - Yu. S. Kharin TI - Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 47 EP - 57 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/ LA - ru ID - BGUMI_2018_2_a5 ER -
%0 Journal Article %A M. K. Dauhaliova %A Yu. S. Kharin %T Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 47-57 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/ %G ru %F BGUMI_2018_2_a5
M. K. Dauhaliova; Yu. S. Kharin. Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 47-57. http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/
[1] Y. u. Kharin, “Robustness in Statistical Forecasting”, New York: Springer, 2013 | DOI | MR | Zbl
[2] Y. u. Kharin, M. Zhurak, “Statistical analysis of spatio-temporal data based on Poisson model”, Informatica, 26(1) (2015), 67–87 | DOI | MR | Zbl
[3] Y. u. Kharin, M. Zhurak, “Statistical forecasting based on binomial conditional autoregressive model of spatio-temporal data”, Pliska Studia Mathematica, 27 (2017), 23–36 | MR | Zbl
[4] A. E. Gelfand, “Handbook of Spatial Statistics”, USA: Taylor and Francis Group, LLC, 2010
[5] A. Boulieri, S. Liverani, K. Hoogh, M. Blangiardo, “A space-time multivariate Bayesian model to analyse road traffic accidents by severity”, Journal of the Royal Statistical Society, 180(1) (2017), 119–139 | DOI | MR
[6] A. Rushworth, D. Lee, C. Sarran, “An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk”, Journal of the Royal Statistical Society, 66(1) (2017), 141–157 | DOI | MR
[7] N. Amek, N. Bayoh, M. Hamel, K. A. Lindblade, J. Gimnig, K. F. Laserson, “Spatio-temporal modeling of sparse geostatistical malaria sporozoite rate data using a zero inflated binomial model”, Spatial and Spatio-temporal Journal of Epidemiology, 2(4) (2011), 283–290 | DOI | MR
[8] Yu. S. Kharin, M. K. Zhurak, “Binomialnaya uslovno avtoregressionnaya model prostranstvenno-vremennykh dannykh i ee veroyatnostno-statisticheskii analiz”, Doklady NAN Belarusi, 59(6) (2015), 5–12 | Zbl
[9] Yu. S. Kharin, M. K. Zhurak, “Asimptoticheskii analiz otsenok maksimalnogo pravdopodobiya parametrov binomialnoi uslovno avtoregressionnoi modeli prostranstvenno-vremennykh dannykh”, Izvestiya NAN Belarusi. Seriya fiziko-matematicheskikh nauk, 1 (2016), 36–45 | DOI
[10] T. A. Sarymsakov, Kh. A. Mustafin, “K ergodicheskoi teoreme dlya neodnorodnykh tsepei Markova”, Trudy Sredneaziatskogo gosudarstvennogo universiteta imeni VI Lenina, 74 (1957), 1–37
[11] P. Lankaster, “Teoriya matrits”, Moskva: Nauka, 1973
[12] Yu. S. Kharin, N. M. Zuev, E. E. Zhuk, “Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika”, Minsk: BGU, 2011
[13] S. N. Bernshtein, “Teoriya veroyatnostei”, Moskva: Gosizdatelstvo, 1927 | Zbl
[14] A. A. Borovkov, “Matematicheskaya statistika. Otsenka parametrov. Proverka gipotez”, Moskva: Nauka, 1984 | MR
[15] R. L. Dobrushin, “Tsentralnaya predelnaya teorema dlya neodnorodnykh tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 1(1) (1956), 72–89 | MR | Zbl