Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 47-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The binomial conditionally autoregressive model of discrete spatio-temporal data is considered in this paper. This model is a multidimensional inhomogeneous Markov chain with a finite state space. Conditions, under which the binomial conditionally autoregressive model satisfies the ergodic principle, are found in case when exogenous factors depend on time. The maximum likelihood approach is used for statistical estimation of model parameters. It is proved that the constructed maximum likelihood estimators are consistent and asymptotically normal distributed for any bounded values of the model parameters and any bounded values of the exogenous factor in case of statistical identifiability of model parameters. Results of computer experiments on simulated data illustrate consistency of maximum likelihood estimators.
Mots-clés : spatio-temporal data
Keywords: inhomogeneous Markov chain, ergodic principle, maximum likelihood estimator, consistency of estimator, asymptotic normality.
@article{BGUMI_2018_2_a5,
     author = {M. K. Dauhaliova and Yu. S. Kharin},
     title = {Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/}
}
TY  - JOUR
AU  - M. K. Dauhaliova
AU  - Yu. S. Kharin
TI  - Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 47
EP  - 57
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/
LA  - ru
ID  - BGUMI_2018_2_a5
ER  - 
%0 Journal Article
%A M. K. Dauhaliova
%A Yu. S. Kharin
%T Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 47-57
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/
%G ru
%F BGUMI_2018_2_a5
M. K. Dauhaliova; Yu. S. Kharin. Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 47-57. http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a5/

[1] Y. u. Kharin, “Robustness in Statistical Forecasting”, New York: Springer, 2013 | DOI | MR | Zbl

[2] Y. u. Kharin, M. Zhurak, “Statistical analysis of spatio-temporal data based on Poisson model”, Informatica, 26(1) (2015), 67–87 | DOI | MR | Zbl

[3] Y. u. Kharin, M. Zhurak, “Statistical forecasting based on binomial conditional autoregressive model of spatio-temporal data”, Pliska Studia Mathematica, 27 (2017), 23–36 | MR | Zbl

[4] A. E. Gelfand, “Handbook of Spatial Statistics”, USA: Taylor and Francis Group, LLC, 2010

[5] A. Boulieri, S. Liverani, K. Hoogh, M. Blangiardo, “A space-time multivariate Bayesian model to analyse road traffic accidents by severity”, Journal of the Royal Statistical Society, 180(1) (2017), 119–139 | DOI | MR

[6] A. Rushworth, D. Lee, C. Sarran, “An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk”, Journal of the Royal Statistical Society, 66(1) (2017), 141–157 | DOI | MR

[7] N. Amek, N. Bayoh, M. Hamel, K. A. Lindblade, J. Gimnig, K. F. Laserson, “Spatio-temporal modeling of sparse geostatistical malaria sporozoite rate data using a zero inflated binomial model”, Spatial and Spatio-temporal Journal of Epidemiology, 2(4) (2011), 283–290 | DOI | MR

[8] Yu. S. Kharin, M. K. Zhurak, “Binomialnaya uslovno avtoregressionnaya model prostranstvenno-vremennykh dannykh i ee veroyatnostno-statisticheskii analiz”, Doklady NAN Belarusi, 59(6) (2015), 5–12 | Zbl

[9] Yu. S. Kharin, M. K. Zhurak, “Asimptoticheskii analiz otsenok maksimalnogo pravdopodobiya parametrov binomialnoi uslovno avtoregressionnoi modeli prostranstvenno-vremennykh dannykh”, Izvestiya NAN Belarusi. Seriya fiziko-matematicheskikh nauk, 1 (2016), 36–45 | DOI

[10] T. A. Sarymsakov, Kh. A. Mustafin, “K ergodicheskoi teoreme dlya neodnorodnykh tsepei Markova”, Trudy Sredneaziatskogo gosudarstvennogo universiteta imeni VI Lenina, 74 (1957), 1–37

[11] P. Lankaster, “Teoriya matrits”, Moskva: Nauka, 1973

[12] Yu. S. Kharin, N. M. Zuev, E. E. Zhuk, “Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika”, Minsk: BGU, 2011

[13] S. N. Bernshtein, “Teoriya veroyatnostei”, Moskva: Gosizdatelstvo, 1927 | Zbl

[14] A. A. Borovkov, “Matematicheskaya statistika. Otsenka parametrov. Proverka gipotez”, Moskva: Nauka, 1984 | MR

[15] R. L. Dobrushin, “Tsentralnaya predelnaya teorema dlya neodnorodnykh tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 1(1) (1956), 72–89 | MR | Zbl