Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_1_a9, author = {D. D. Vasilkov}, title = {Global balancing of a triangular mesh}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {88--94}, publisher = {mathdoc}, volume = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a9/} }
D. D. Vasilkov. Global balancing of a triangular mesh. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 88-94. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a9/
[1] G. Farin, “Curves and surfaces for CAGD”, San Diego: Acad. Press, 1997
[2] J. R. Shewchuk, “What is a good linear finite element”, 11th International Meshing Roundtable, 2002, 115–126, New York: Ithaca
[3] L. Paul-Chew, “Guaranteed-quality mesh generation for curved surfaces”, Proceedings of the Ninth Annual Symposium on Computational Geometry (San Diego), 1993, 274–280, New York: ACM | DOI
[4] J. Ruppert, “A Delaunay refinement algorithm for quality 2-dimensional mesh generation”, J. Algorithms, 18 (1995), 548–585 | DOI | MR | Zbl
[5] H. Erten, A. Ungor, “Triangulations with locally optimal steiner points”, Eurographics Symposium on Geometry Processing (Barcelona), 2007, 1–10 | MR
[6] C. C. Paige, M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares”, ACM Trans. Math. Soft, 8 (1982), 43–71 | DOI | MR | Zbl
[7] S. Rennich, D. Stosic, T. A. Davis, “Accelerating sparse cholesky factorization on GPUs”, Architectures and Algorithms: IA3 Seventh Workshop on Irregul. Appl. (Denver), 2014 | MR