Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_1_a8, author = {V. V. Korolevich and D. G. Medvedev}, title = {The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {77--87}, publisher = {mathdoc}, volume = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/} }
TY - JOUR AU - V. V. Korolevich AU - D. G. Medvedev TI - The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 77 EP - 87 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/ LA - ru ID - BGUMI_2018_1_a8 ER -
%0 Journal Article %A V. V. Korolevich %A D. G. Medvedev %T The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 77-87 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/ %G ru %F BGUMI_2018_1_a8
V. V. Korolevich; D. G. Medvedev. The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 77-87. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/
[1] A. I. Uzdalev, “Nekotorye zadachi termouprugosti anizotropnogo tela”, Saratov: Izd-vo Saratov. un-ta, 1967
[2] A. I. Uzdalev, E. N. Bryukhanova, “Uravnenie teploprovodnosti dlya plastiny peremennoi tolschiny s neodnorodnymi teplofizicheskimi svoistvami”, Zadachi prikladnoi teorii uprugosti: mezhvuz. nauchn. sb. Saratov. Saratov. politekhn. in-t, 1985, 3–7
[3] Yu. I. Dmitrienko, “Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh”, Mashinostroenie, 1997
[4] V. V. Korolevich, D. G. Medvedev, “Statsionarnye temperaturnye polya v anizotropnykh koltsevykh plastinakh peremennoi tolschiny s teploizolirovannymi osnovaniyami”, Vestnik BGU. Fizika. Matematika. Informatika, 2016, 160–165
[5] E. Kamke, “Spravochnik po obyknovennym differentsialnym uravneniyam”, Nauka, 1976
[6] A. D. Kovalenko, “Kruglye plastinki peremennoi tolschiny”, Fizmatgiz, 1959
[7] M. L. Krasnov, A. I. Kiselev, G. I. Makarenko, “Integralnye uravneniya: zadachi i primery s podrobnymi resheniyami”, KomKniga, 2007
[8] A. F. Verlan, V. S. Sizikov, “Integralnye uravneniya: metody, algoritmy, programmy”, Cprav. posobie. Kiev, 1986