The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 77-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work is given the solution of nonaxisymmetric stationary heat conduction problem for profiled polar-orthotropic annular plates with thermally insulated bases. The dependence of the thermophysical characteristics of the plate material of the temperature is taken into account. Temperature values are set on the contours of the annular plate: temperature $T_{0}^{*}$ is constant on the internal contour, and on the outer contour on several arcs with length $l_{i}(i=\overline{1,k})$ – temperature is $T_{1}^{*}(T_{1}^{*}>T_{0}^{*})$. The temperature distribution in such a plate is nonaxisymmetric. It is assumed that the radial $\lambda_{r}$, and tangential $\lambda_{0}$ heat conduction coefficients are linearly dependent on the temperature $T(r,\Theta)$: $\lambda_{r}(T)=\lambda_{r}^{(0)}(1-\gamma T(r,\Theta)), \lambda_{\Theta}(T)=\lambda_{\Theta}^{(0)}(1-\gamma T(r,\Theta))$, here the parameter $\gamma>1$; the constants $\lambda_{r}^{(0)}, \lambda_{r}^{(\Theta)}$ are determined experimentally at the primary temperature $T_{0}$. The primary nonlinear differential heat equation is reduced to a linear differential equation of the $2^{nd}$ kind in partial derivatives when a new function $Z(r, \Theta)=[T(r, \Theta)-\frac{\gamma}{2}T^{2}(r, \Theta)]$ is introduced in consideration.
Keywords: composite material; temperature; polar-orthotropic annular plate; stationary heat conduction equation; differential equation; Volterra integral equation of the $2^{nd}$ kind; resolvent; quadratic equation; plate of power profile; conical plate; plate of exponential profile.
@article{BGUMI_2018_1_a8,
     author = {V. V. Korolevich and D. G. Medvedev},
     title = {The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/}
}
TY  - JOUR
AU  - V. V. Korolevich
AU  - D. G. Medvedev
TI  - The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 77
EP  - 87
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/
LA  - ru
ID  - BGUMI_2018_1_a8
ER  - 
%0 Journal Article
%A V. V. Korolevich
%A D. G. Medvedev
%T The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 77-87
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/
%G ru
%F BGUMI_2018_1_a8
V. V. Korolevich; D. G. Medvedev. The solution of the nonaxisymmetric stationary problem of heat conduction for the polar-orthotropic annular plate of variable thickness. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 77-87. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a8/

[1] A. I. Uzdalev, “Nekotorye zadachi termouprugosti anizotropnogo tela”, Saratov: Izd-vo Saratov. un-ta, 1967

[2] A. I. Uzdalev, E. N. Bryukhanova, “Uravnenie teploprovodnosti dlya plastiny peremennoi tolschiny s neodnorodnymi teplofizicheskimi svoistvami”, Zadachi prikladnoi teorii uprugosti: mezhvuz. nauchn. sb. Saratov. Saratov. politekhn. in-t, 1985, 3–7

[3] Yu. I. Dmitrienko, “Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh”, Mashinostroenie, 1997

[4] V. V. Korolevich, D. G. Medvedev, “Statsionarnye temperaturnye polya v anizotropnykh koltsevykh plastinakh peremennoi tolschiny s teploizolirovannymi osnovaniyami”, Vestnik BGU. Fizika. Matematika. Informatika, 2016, 160–165

[5] E. Kamke, “Spravochnik po obyknovennym differentsialnym uravneniyam”, Nauka, 1976

[6] A. D. Kovalenko, “Kruglye plastinki peremennoi tolschiny”, Fizmatgiz, 1959

[7] M. L. Krasnov, A. I. Kiselev, G. I. Makarenko, “Integralnye uravneniya: zadachi i primery s podrobnymi resheniyami”, KomKniga, 2007

[8] A. F. Verlan, V. S. Sizikov, “Integralnye uravneniya: metody, algoritmy, programmy”, Cprav. posobie. Kiev, 1986