Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_1_a7, author = {A. J. Kharin and T. T. Tu}, title = {On error probabilities calculation for the truncated sequential probability ratio test}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {68--76}, publisher = {mathdoc}, volume = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a7/} }
TY - JOUR AU - A. J. Kharin AU - T. T. Tu TI - On error probabilities calculation for the truncated sequential probability ratio test JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 68 EP - 76 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a7/ LA - ru ID - BGUMI_2018_1_a7 ER -
%0 Journal Article %A A. J. Kharin %A T. T. Tu %T On error probabilities calculation for the truncated sequential probability ratio test %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 68-76 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a7/ %G ru %F BGUMI_2018_1_a7
A. J. Kharin; T. T. Tu. On error probabilities calculation for the truncated sequential probability ratio test. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 68-76. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a7/
[1] A. Wald, “Sequential analysis”, New York: John Wiley and Sons, 1947 | MR
[2] A. Yu. Kharin, “Robastnost baiesovskikh i posledovatelnykh statisticheskikh reshayuschikh pravil”, Minsk: BGU, 2013
[3] Z. Govindarajulu, “Sequential statistics”, Singapore: World Sci. Publ., 2004 | MR
[4] A. Kharin, D. Kishylau, “Robust sequential testing of hypotheses on discrete probability distributions”, Austrian J. Stat, 34(2) (2005), 153–162 | DOI
[5] A. Y. Kharin, “Performance and robustness evaluation in sequential hypotheses testing”, Commun. in Stat. – Theory and Methods, 45 (2016), 1693–1709 | DOI | MR | Zbl
[6] V. Galinskij, A. Kharin, “On minimax robustness of Bayesian statistical prediction”, Prob. Theory Math. Stat. Vilnius: TEV, 1999, 259–266 | Zbl
[7] A. Y. Kharin, “Robust bayesian prediction under distortions of prior and conditional distributions”, J. Math. Sci, 126 (2005), 992–997 | DOI | MR
[8] A. Yu. Kharin, T. T. Ton, “Posledovatelnaya statisticheskaya proverka gipotez o parametrakh vremennykh ryadov s trendom pri propuskakh nablyudenii”, Izvestiya NAN Belarusi. Seriya fiziko-matematicheskikh nauk, 2016, 38–46
[9] A. Y. Kharin, T. T. Ton, “Performance and robustness analysis of sequential hypotheses testing for time series with trend”, Austrian J. Stat, 46(3–4) (2017), 23–36 | DOI | MR
[10] C. R. Rao, “Linear statistical inference and its applications”, New York: Wiley, 1965 | MR
[11] E. G. Kounias, “Bounds for the probability of a union, with applications”, Ann. Math. Stat, 39(6) (1968), 2154–2158 | DOI | MR | Zbl
[12] M. Bilodeau, D. Brenner, “Theory of multivariate statistics”, New York: Springer. Verlag, 1999 | MR
[13] D. Hunter, “An upper bound for the probability of a union”, J. Appl. Probab, 13 (1976), 597–603 | DOI | MR | Zbl
[14] T. Anderson, “Statisticheskii analiz vremennykh ryadov”, Mir, 1976
[15] I. D. Coope, “On matrix trace inequalities and related topics for products of Hermitian matrices”, J. math. anal. appl, 188 (1994), 999–1001 | DOI | MR | Zbl