Hybrid term structure models
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 39-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the properties of so-called hybrid models in which the various components of a multi-dimensional vector describing the state of the market, are both affine and non-affine models. Such models allows to combine the strengths of both affine and non-affine models. Using example of a hybrid model quadratic – Duffy – Kan the different properties were found for the main functions of the term structure – the forward rate and the yield curve. We found conditions on the parameters of the model, when curves are increases (decreases). Width of the bands characterizing the flexibility of the model fitting to the real data was studied. As a result, it is shown that expanding affine models to hybrid models by adding non-affine factors does not add additional complexity to analysis, but increases flexibility of the model.
Keywords: yield curve; forward rate; hybrid model; quadratic model; Duffy – Kan model.
@article{BGUMI_2018_1_a4,
     author = {D. A. Pauliu},
     title = {Hybrid term structure models},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a4/}
}
TY  - JOUR
AU  - D. A. Pauliu
TI  - Hybrid term structure models
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 39
EP  - 47
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a4/
LA  - ru
ID  - BGUMI_2018_1_a4
ER  - 
%0 Journal Article
%A D. A. Pauliu
%T Hybrid term structure models
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 39-47
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a4/
%G ru
%F BGUMI_2018_1_a4
D. A. Pauliu. Hybrid term structure models. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 39-47. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a4/

[1] G. A. Medvedev, “O vremennoi strukture dokhodnosti. Odnofaktornaya model Daffi – Kana”, Vestn. Tom. gos. un-ta, 3(20) (2012), 71–80

[2] G. A. Medvedev, D. A. Pavliv, “O kvadratichnykh modelyakh dokhodnosti v risk-neitralnoi srede”, Vestn. Tom. gos. un-ta, 4(37) (2016), 44–56

[3] D. Ahn, R. Dittmar, A. Gallant, “Purebred or hybrid?: Reproducing the volatility in term structure dynamics”, J. Econom, 116 (2003), 147–180 | DOI | MR | Zbl

[4] D. Ahn, R. Dittmar, A. Gallant, “Quadratic Term Structure Models: Theory and Evidence”, New Orleans: AFA, 2001

[5] G. A. Medvedev, “O vremennoi strukture dokhodnosti. Novaya versiya”, Vestn. Tom. gos. un-ta, 4(25) (2013), 61–70