Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_1_a3, author = {A. Gladkov and T. V. Kavitova}, title = {On the initial-boundary value problem for a nonlocal parabolic equation with nonlocal boundary condition}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {29--38}, publisher = {mathdoc}, volume = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a3/} }
TY - JOUR AU - A. Gladkov AU - T. V. Kavitova TI - On the initial-boundary value problem for a nonlocal parabolic equation with nonlocal boundary condition JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 29 EP - 38 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a3/ LA - ru ID - BGUMI_2018_1_a3 ER -
%0 Journal Article %A A. Gladkov %A T. V. Kavitova %T On the initial-boundary value problem for a nonlocal parabolic equation with nonlocal boundary condition %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 29-38 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a3/ %G ru %F BGUMI_2018_1_a3
A. Gladkov; T. V. Kavitova. On the initial-boundary value problem for a nonlocal parabolic equation with nonlocal boundary condition. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 29-38. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a3/
[1] K. Deng, “Comparison principle for some nonlocal problems”, Quart. Appl. Math, 50(3) (1992), 517–522 | DOI | MR | Zbl
[2] Z. Lin, Y. Liu, “Uniform blowup profiles for diffusion equations with nonlocal source and nonlocal boundary”, Acta Math. Sci, 24(3) (2004), 443–450 | DOI | MR | Zbl
[3] Y. Wang, C. Mu, Z. Xiang, “Properties of positive solution for nonlocal reaction-diffusion equation with nonlocal boundary”, Bound. Value Probl, 2007, 1–12 | DOI | MR
[4] Z. Cui, Z. Yang, “Roles of weight functions to a nonlinear porous medium equation with nonlocal source and nonlocal boundary condition”, J. Math. Anal. Appl, 342(1) (2008), 559–570 | DOI | MR | Zbl
[5] C. Mu, D. Liu, S. Zhou, “Properties of positive solutions for a nonlocal reaction-diffusion equation with nonlocal nonlinear boundary condition”, J. Korean Math. Soc, 47(6) (2010), 1317–1328 | DOI | MR | Zbl
[6] A. Gladkov, M. Guedda, “Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition”, Nonlinear Anal, 74(13) (2011), 4573–4580 | DOI | MR | Zbl
[7] G. Zhong, L. Tian, “Blow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition”, Bound. Value Probl, 2012, 1–14 | DOI | MR
[8] A. Gladkov, M. Guedda, “Semilinear heat equation with absorption and a nonlocal boundary condition”, Appl. Anal, 91(12) (2012), 2267–2276 | DOI | MR | Zbl
[9] Z. B. Fang, J. Zhang, S. C. Yi, “Roles of weight functions to a nonlocal porous medium equation with inner absorption and nonlocal boundary condition”, Abstr. Appl. Anal, 2012, 1–16 | DOI | MR
[10] Z. B. Fang, J. Zhang, “Influence of weight functions to a nonlocal p-Laplacian evolution equation with inner absorption and nonlocal boundary condition”, J. Inequal. Appl, 2013, 1–10 | MR
[11] Z. B. Fang, J. Zhang, “Global and blow-up solutions for the nonlocal p-Laplacian evolution equation with weighted nonlinear nonlocal boundary condition”, J. Integral Equ. Appl, 26(2) (2014), 171–196 | DOI | MR | Zbl
[12] C. V. Pao, “Nonlinear Parabolic and Elliptic Equations”, New York: Plenum Press, 1992 | MR
[13] C. S. Kahane, “On the asymptotic behavior of solutions of parabolic equations”, Czechoslovak Math. J, 33(108) (1983), 262–285 | DOI | MR | Zbl
[14] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, “Lineinye i kvazilineinye uravneniya parabolicheskogo tipa”, Nauka, 1967 | MR