Integrate inequalities for the higher derivatives of Blashke product
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper and lower inequalities for the higher derivatives of Blashke product in the Lebesgue space $L_{p}$ are obtained in this work. All $p\in (0,+\infty)\setminus \{\frac{1}{s}\}, s\in \mathbb{N}\setminus \{1\}$, are considered, where s is order of the derivative. The case $p = \frac{1}{s}$ was investigated by the author earlier. Let $a_{n}=\{a_{1},\dots , a_{n}\}$ be a certain set of $n$ complex numbers laying in the unit disc $|z| 1$. Let us introduce the Blashke products $b_{n}(z)=\displaystyle\prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a_{k}}z}$ with zeros at the points $a_{1}, a_{2},\dots , a_{n}$. For $0$ and $s\in \mathbb{N}$ holds the equality $\displaystyle\inf_{a_{n}}\lVert b_{n}^{(s)}\rVert_{L_{p}}=0$. For $p>1$ $\displaystyle\inf_{a_{n}}\lVert b_{n}^{'}\rVert_{L_{p}}=n$. For $\frac{1}{s}$ and $s\in \mathbb{N}$ holds the equality $\displaystyle\sup_{a_{n}}\lVert b_{n}^{(s)}\rVert_{L_{p}}=+\infty$. In other cases, the obtained estimates are exact in order. The main results of the present paper are stated in theorems $1 - 5$.
Keywords: Blashke product; rational functions; higher derivatives; Lebesgue space.
@article{BGUMI_2018_1_a1,
     author = {T. S. Mardvilko},
     title = {Integrate inequalities for the higher derivatives of {Blashke} product},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {10--16},
     publisher = {mathdoc},
     volume = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a1/}
}
TY  - JOUR
AU  - T. S. Mardvilko
TI  - Integrate inequalities for the higher derivatives of Blashke product
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 10
EP  - 16
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a1/
LA  - ru
ID  - BGUMI_2018_1_a1
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%T Integrate inequalities for the higher derivatives of Blashke product
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 10-16
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a1/
%G ru
%F BGUMI_2018_1_a1
T. S. Mardvilko. Integrate inequalities for the higher derivatives of Blashke product. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 10-16. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a1/

[1] V. N. Rusak, “Obobschenie neravenstva SN Bernshteina dlya proizvodnoi trigonometricheskogo mnogochlena”, Doklad AN BSSR, 7(9) (1963), 580–583 | Zbl

[2] E. P. Dolzhenko, “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh i algebraicheskikh funktsii”, Anal. Math, 4(4) (1978), 247–268 | DOI

[3] A. A. Pekarskii, “Otsenki vysshikh proizvodnykh ratsionalnykh funktsii i ikh prilozheniya”, Izvestiya AN BSSR. Seriya fiziziko-matematicheskikh nauk, 5 (1980), 21–29 | MR

[4] G. G. Lorentz, M. Golitschek, Y. Makovoz, “Constructive Approximation. Advanced Problems”, New York; Berlin; Heidelberg : Springer-Verlag, 1996 | MR

[5] P. P. Petrushev, V. A. Popov, “Rational Approximation of Real Functions”, Cambridge : Univ. Press, 1987 | MR

[6] T. S. Mardvilko, “On the values of the constants in the Bernstein type inequalities for higher derivatives of rational functions”, East approximat, 15(2) (2009), 31–42 | MR

[7] H. Hedenmalm, B. Korenblum, K. Zhu, “Theory of Bergman Spaces, Boundary Problems”, New York; Berlin; Heidelberg : SpringerVerlag, 2000 | MR