Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 73-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

New iterative processes for numerical solution of big nonlinear systems of equations are considered. The processes do not require factorization and storing of Jacobi matrix and employ a special technique of convergence acceleration which is called least-squares error damping and requires solution of auxiliary linear least-squares problems of low dimension. In linear case the resulting method is similar to the general minimal residual method (GMRES) with preconditioning. In nonlinear case, in contrast to popular Newton – Krylov method, the computational scheme do not involve operation of difference approximation of derivative operator. Numerical experiments include three nonlinear problems originating from two-dimensional elliptic partial differential equations and exhibit advantage of the proposed method compared to Newton – Krylov method.
Keywords: nonlinear systems of equations; matrix-free methods; acceleration of convergence; least-squares; Newton – Krylov method; difference schemes.
@article{BGUMI_2017_3_a7,
     author = {I. V. Bondar and B. V. Faleichik},
     title = {Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/}
}
TY  - JOUR
AU  - I. V. Bondar
AU  - B. V. Faleichik
TI  - Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 73
EP  - 84
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/
LA  - ru
ID  - BGUMI_2017_3_a7
ER  - 
%0 Journal Article
%A I. V. Bondar
%A B. V. Faleichik
%T Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 73-84
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/
%G ru
%F BGUMI_2017_3_a7
I. V. Bondar; B. V. Faleichik. Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 73-84. http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/

[1] B. Faleichik, I. Bondar, V. Byl, “Generalized Picard iterations: A class of iterated Runge – Kutta methods for stiff problems”, J. Comput. Appl. Math, 262 (2014), 37–50 | DOI | MR | Zbl

[2] Y. Saad, “Iterative methods for Sparse Linear Systems”, Philadelphia: Siam, 2003 | MR | Zbl

[3] D. A. Knoll, D. E. Keyes, “Jacobian-free Newton – Krylov methods: a survey of approaches and applications”, J. Comput. Phys, 193 (2004), 357–397 | DOI | MR | Zbl

[4] D. K. Faddeev, V. N. Faddeeva, “Vychislitelnye metody lineinoi algebry”, Fizmatgiz, 1960 | MR

[5] D. Ortega, V. Reinboldt, “Iteratsionnye metody resheniya nelineinykh uravnenii so mnogimi neizvestnymi”, Mir, 1975 | MR | Zbl

[6] V. P. Shapeev, E. V. Vorozhtsov, V. I. Isaev, “Metod kollokatsii i naimenshikh nevyazok dlya trekhmernykh uravnenii Nave – Stoksa”, Vychisl. metody i programmirovanie, 14 (2013), 306–322

[7] A. G. Kurosh, “Kurs vysshei algebry”, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1968 | MR

[8] L. N. Trefethen, D. Bau, “Numerical Linear Algebra”, Philadelphia: Siam, 1997 | MR | Zbl

[9] A. A. Samarskii, “Teoriya raznostnykh skhem”, Nauka, 1977

[10] A. H. Baker, E. R. Jessup, T. Manteuffel, “A Technique for Accelerating the Convergence of Restarted GMRES”, SIAM J. Matrix Anal. Appl, 26 (2005), 962–984 | DOI | MR | Zbl

[11] H. Walker, N. Peng, “Anderson acceleration for fixed-point iterations”, SIAM J. Numer. Anal, 49 (2011), 1715–1735 | DOI | MR | Zbl

[12] A. Toth, C. T. Kelley, “Convergence Analysis for Anderson Acceleration”, SIAM J. Numer. Anal, 5 (2015), 805–819 | DOI | MR