Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_3_a7, author = {I. V. Bondar and B. V. Faleichik}, title = {Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {73--84}, publisher = {mathdoc}, volume = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/} }
TY - JOUR AU - I. V. Bondar AU - B. V. Faleichik TI - Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 73 EP - 84 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/ LA - ru ID - BGUMI_2017_3_a7 ER -
%0 Journal Article %A I. V. Bondar %A B. V. Faleichik %T Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 73-84 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/ %G ru %F BGUMI_2017_3_a7
I. V. Bondar; B. V. Faleichik. Matrix-free iterative processes with least-squares error damping for nonlinear systems of equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 73-84. http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a7/
[1] B. Faleichik, I. Bondar, V. Byl, “Generalized Picard iterations: A class of iterated Runge – Kutta methods for stiff problems”, J. Comput. Appl. Math, 262 (2014), 37–50 | DOI | MR | Zbl
[2] Y. Saad, “Iterative methods for Sparse Linear Systems”, Philadelphia: Siam, 2003 | MR | Zbl
[3] D. A. Knoll, D. E. Keyes, “Jacobian-free Newton – Krylov methods: a survey of approaches and applications”, J. Comput. Phys, 193 (2004), 357–397 | DOI | MR | Zbl
[4] D. K. Faddeev, V. N. Faddeeva, “Vychislitelnye metody lineinoi algebry”, Fizmatgiz, 1960 | MR
[5] D. Ortega, V. Reinboldt, “Iteratsionnye metody resheniya nelineinykh uravnenii so mnogimi neizvestnymi”, Mir, 1975 | MR | Zbl
[6] V. P. Shapeev, E. V. Vorozhtsov, V. I. Isaev, “Metod kollokatsii i naimenshikh nevyazok dlya trekhmernykh uravnenii Nave – Stoksa”, Vychisl. metody i programmirovanie, 14 (2013), 306–322
[7] A. G. Kurosh, “Kurs vysshei algebry”, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1968 | MR
[8] L. N. Trefethen, D. Bau, “Numerical Linear Algebra”, Philadelphia: Siam, 1997 | MR | Zbl
[9] A. A. Samarskii, “Teoriya raznostnykh skhem”, Nauka, 1977
[10] A. H. Baker, E. R. Jessup, T. Manteuffel, “A Technique for Accelerating the Convergence of Restarted GMRES”, SIAM J. Matrix Anal. Appl, 26 (2005), 962–984 | DOI | MR | Zbl
[11] H. Walker, N. Peng, “Anderson acceleration for fixed-point iterations”, SIAM J. Numer. Anal, 49 (2011), 1715–1735 | DOI | MR | Zbl
[12] A. Toth, C. T. Kelley, “Convergence Analysis for Anderson Acceleration”, SIAM J. Numer. Anal, 5 (2015), 805–819 | DOI | MR