Existence and uniqueness theorem of associated solutions of the stochastic differential system with measures
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 60-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for stochastic differential system with measures is considered in the paper. Finite-difference with averaging system of stochastic differential equations with correspondence to Cauchy problem is investigated. Stochastic integral equation system with the solution as a limit of the finite-difference with averaging system of stochastic differential equations is studied and also the space of the solutions is described. Moreover, the Cauchy problem associated solutions of the stochastic differential system with measures are defined. Existence and uniqueness theorem of the associated solutions is proved. Besides that, Cauchy problem for higher-order linear stochastic differential equation is considered. Associated solutions of the Cauchy problem are investigated. Also the theorem of the representation of the associated solutions of the higher-order linear stochastic differential equation with help of associated fundamental matrices of the correspondent homogeneous equation system is proved.
Keywords: stochastic differential systems with measures; finite-difference with averaging stochastic differential systems; existence and uniqueness theorem; associated solutions; higher-order linear stochastic differential equations.
@article{BGUMI_2017_3_a6,
     author = {A. Y. Rusetski},
     title = {Existence and uniqueness theorem of associated solutions of the stochastic differential system with measures},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {60--72},
     publisher = {mathdoc},
     volume = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a6/}
}
TY  - JOUR
AU  - A. Y. Rusetski
TI  - Existence and uniqueness theorem of associated solutions of the stochastic differential system with measures
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 60
EP  - 72
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a6/
LA  - ru
ID  - BGUMI_2017_3_a6
ER  - 
%0 Journal Article
%A A. Y. Rusetski
%T Existence and uniqueness theorem of associated solutions of the stochastic differential system with measures
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 60-72
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a6/
%G ru
%F BGUMI_2017_3_a6
A. Y. Rusetski. Existence and uniqueness theorem of associated solutions of the stochastic differential system with measures. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 60-72. http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a6/

[1] M. Arato, “Lineinye stokhasticheskie sistemy s postoyannymi koeffitsientami. Statisticheskii podkhod”, Nauka, 1989 | MR

[2] Yu. V. Gridnev, A. Yu. Rusetskii, S. A. Rak, “Stokhasticheskoe modelirovanie sistem avtomaticheskogo upravleniya bespilotnogo letatelnogo apparata s primeneniem optimalnogo filtra Kalmana”, Dokl. BGUIR, # 8 (78) (2013), 53–59

[3] A. N. Shiryaev, “Osnovy stokhasticheskoi finansovoi matematiki”, Fazis, 1 (1998) | Zbl

[4] K. F. Gauss, “Izbrannye geodezicheskie sochineniya”, Izdatelstvo geodezicheskoi literatury, 1957

[5] V. S. Vladimirov, “Obobschennye funktsii v matematicheskoi fizike”, Nauka, 1979 | MR

[6] B. M. Miller, E. Ya. Rubinovich, “Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami”, Nauka, 2005

[7] G. A. Medvedev, “Matematicheskie modeli finansovykh riskov”, Minsk: BGU, 1 (2001)

[8] T. S. Avtushko, N. V. Lazakovich, A. Yu. Rusetskii, “Lineinye odnorodnye differentsialnye uravneniya vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestn. BGU. Fizika. Matematika. Informatika, 2 (2013), 74–79

[9] T. S. Avtushko, “Zadacha Koshi dlya lineinykh differentsialnykh uravnenii vysshikh poryadkov s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestsi BDPU. Fizika. Matematyka. Іnfarmatyka. Biyalogiya. Geagrafiya, 2 (2014), 24–28

[10] T. S. Avtushko, N. V. Lazakovich, A. Yu. Rusetskii, “Zadacha Koshi dlya lineinykh neodnorodnykh differentsialnykh uravnenii vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 3 (2013), 83–92

[11] R. M. Tatsii, M. F. Stasyuk, V. V. Mazurenko, “Uzagalneni kvazidiferentsialni rivnyannya”, Drogobich: Kolo, 2011

[12] Yu. A. Rozanov, “Sluchainye protsessy. Kratkii kurs”, Nauka, 1979 | MR