Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_3_a1, author = {P. N. Varabei}, title = {Calculation of hausdorff dimensions of basins of ergodic measures in encoding spaces}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {11--18}, publisher = {mathdoc}, volume = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a1/} }
TY - JOUR AU - P. N. Varabei TI - Calculation of hausdorff dimensions of basins of ergodic measures in encoding spaces JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 11 EP - 18 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a1/ LA - ru ID - BGUMI_2017_3_a1 ER -
%0 Journal Article %A P. N. Varabei %T Calculation of hausdorff dimensions of basins of ergodic measures in encoding spaces %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 11-18 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a1/ %G ru %F BGUMI_2017_3_a1
P. N. Varabei. Calculation of hausdorff dimensions of basins of ergodic measures in encoding spaces. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 11-18. http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a1/
[1] G. Edgar, “Measure, Topology, and Fractal Geometry”, New York: Springer, 2008 | MR
[2] K. Falconer, “Fractal Geometry. Mathematical foundations and applications”, Chichester: Wiley, 2003 | MR | Zbl
[3] Ya. Pesin, “Teoriya razmernosti i dinamicheskie sistemy”, Sovremennyi vzglyad i prilozheniya, 2002, Minsk : Institut kompyuternykh issledovanii
[4] P. Billingsley, “Hausdorff dimension in probability theory”, Ill. J. Math, 1960, 187–209 | MR | Zbl
[5] P. Billingsley, “Hausdorff dimension in probability theory”, Ill. J. Math, 1961, 291–298 | MR
[6] L. S. Young, “Dimension, entropy and Lyapunov exponents”, Ergod. Theory Dyn. Syst, 1982, 109–124 | DOI | MR | Zbl
[7] V. I. Bakhtin, “The McMillan theorem for colored branching processes and dimensions of random fractals”, Entropy, 16, # 12 (2014), 6624–6653 | DOI | MR | Zbl
[8] P. Billingsli, “Ergodicheskaya teoriya i informatsiya”, Mir, 1969 | MR
[9] M. Brin, G. Stuck, “Introduction to dynamical systems”, Cambridge: Cambridge University Press, 2002 | MR | Zbl
[10] P. H. Algoet, T. M. Cover, “A sandwich proof of the Shannon – McMillan – Breiman theorem”, The Ann. Probab, 16, # 2 (1988), 899–909 | MR | Zbl