Analogue Sochocky formulae for integral operators with additional logarithmic singularity
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 4-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the limit formulas for singular integrals of the form $\Phi_{n}(z)=\int\limits_{0}^{1}\frac{\varphi(\tau)ln^{n}(\tau-z)}{\tau-z}\mathbb{d}\tau, n=1,2,\dots$ Limit values of such integrals are expressed in terms of singular integral operators $\Psi_{n}(t)=\int\limits_{0}^{1}\frac{\varphi(\tau)ln^{n}|\tau-t|}{\tau-t}\mathbb{d}\tau, n=1,2,\dots, t\in (0,1),$ and also integral operators $\int\limits_{0}^{t}\frac{\varphi(\tau)-\varphi(t)}{\tau-t}ln^{k}|t-\tau|\mathbb{d}\tau.$ As an application of these formulas derived additive representation for singular integrals $\int\limits_{0}^{1}\frac{\varphi(\tau)ln|\tau-t|}{\tau-t}\mathbb{d}\tau.$ The formulas are derived in the article can be used for research and operators singular integral equations solutions.
Keywords: integral operators; singular integrals.
@article{BGUMI_2017_3_a0,
     author = {V. V. Kashevski},
     title = {Analogue {Sochocky} formulae for integral operators with additional logarithmic singularity},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {4--10},
     publisher = {mathdoc},
     volume = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a0/}
}
TY  - JOUR
AU  - V. V. Kashevski
TI  - Analogue Sochocky formulae for integral operators with additional logarithmic singularity
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 4
EP  - 10
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a0/
LA  - ru
ID  - BGUMI_2017_3_a0
ER  - 
%0 Journal Article
%A V. V. Kashevski
%T Analogue Sochocky formulae for integral operators with additional logarithmic singularity
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 4-10
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a0/
%G ru
%F BGUMI_2017_3_a0
V. V. Kashevski. Analogue Sochocky formulae for integral operators with additional logarithmic singularity. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2017), pp. 4-10. http://geodesic.mathdoc.fr/item/BGUMI_2017_3_a0/

[1] F. D. Gakhov, “Kraevye zadachi”, Nauka, 1977 | MR

[2] N. I. Muskhelishvili, “Singulyarnye integralnye uravneniya”, Nauka, 1968