Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_2_a6, author = {V. V. Korolevich and D. G. Medvedev}, title = {Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by {Volterra} integral equation of the second kind}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {44--51}, publisher = {mathdoc}, volume = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/} }
TY - JOUR AU - V. V. Korolevich AU - D. G. Medvedev TI - Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by Volterra integral equation of the second kind JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 44 EP - 51 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/ LA - ru ID - BGUMI_2017_2_a6 ER -
%0 Journal Article %A V. V. Korolevich %A D. G. Medvedev %T Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by Volterra integral equation of the second kind %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 44-51 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/ %G ru %F BGUMI_2017_2_a6
V. V. Korolevich; D. G. Medvedev. Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by Volterra integral equation of the second kind. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 44-51. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/