Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_2_a6, author = {V. V. Korolevich and D. G. Medvedev}, title = {Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by {Volterra} integral equation of the second kind}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {44--51}, publisher = {mathdoc}, volume = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/} }
TY - JOUR AU - V. V. Korolevich AU - D. G. Medvedev TI - Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by Volterra integral equation of the second kind JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 44 EP - 51 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/ LA - ru ID - BGUMI_2017_2_a6 ER -
%0 Journal Article %A V. V. Korolevich %A D. G. Medvedev %T Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by Volterra integral equation of the second kind %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 44-51 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/ %G ru %F BGUMI_2017_2_a6
V. V. Korolevich; D. G. Medvedev. Calculation of the axisimmetric thermopower bending problem of rotating in the thermal field of the polar-orthotropic disc with variable thickness by Volterra integral equation of the second kind. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 44-51. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a6/
[1] V. V. Vorobei, E. V. Morozov, O. V. Tatarnikov, “Raschet termonapryazhennykh konstruktsii iz kompozitsionnykh materialov”, 1992
[2] S. M. Durgaryan, “Temperaturnyi raschet ortotropnoi sloistoi plastinki pri uprugikh postoyannykh i koeffitsiente temperaturnogo rasshireniya, zavisyaschikh ot temperatury”, Izv. Akad. nauk Arm. SSR. Fiz.-mat. nauki, 13, # 2 (1960), 73–88
[3] V. V. Korolevich, D. G. Medvedev, “Integralnye uravneniya Volterry vtorogo roda v zadachakh izgiba vraschayuschikhsya polyarnoortotropnykh diskov peremennoi tolschiny”, Vestn. BGU. Fizika. Matematika. Informatika, # 3 (2012), 108–116
[4] V. V. Korolevich, D. G. Medvedev, “Reshenie osesimmetrichnoi ploskoi zadachi termouprugosti dlya vraschayuschegosya v teplovom pole polyarno-ortotropnogo diska peremennoi tolschiny metodom integralnogo uravneniya Volterry vtorogo roda”, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, # 1 (2017), 47–52
[5] M. L. Krasnov, A. I. Kiselev, G. I. Makarenko, “Integralnye uravneniya: zadachi i primery s podrobnymi resheniyami”, 2007
[6] A. F. Verlan, V. S. Sizikov, “Integralnye uravneniya: metody, algoritmy, programmy”, Kiev, 1986
[7] S. V. Boyarshinov, “Osnovy stroitelnoi mekhaniki mashin”, 1973