Numerical modeling of high-energy ion implantation using Fokker – Planck equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of transport for high energetic ions in solids based on numerical solving of the boundary value problem for the Fokker – Planck equation is considered. The Fokker – Planck equation has a second order both on energetic and angular variables. We derived the difference scheme approximating the boundary value problem. It was shown, that the difference scheme is satisfied the grid maximum principle. There is estimated the stability of the difference solutions with respect to the initial data. We present the results of computational experiments on modeling of bismuth and phosphorus ion transport under ion implantation into the silicon with the initial energy of 1 and 50 MeV. We compared depth distribution profiles of stopped particles obtained using both the presented model and the model without angular scattering with the data of statistical simulations.
Keywords: the high-energy ion implantation; the Fokker – Planck equation; difference schemes; stability.
@article{BGUMI_2017_2_a4,
     author = {V. Belko and S. V. Lemeshevskii and M. M. Chuiko},
     title = {Numerical modeling of high-energy ion implantation using {Fokker} {\textendash} {Planck} equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {28--36},
     publisher = {mathdoc},
     volume = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/}
}
TY  - JOUR
AU  - V. Belko
AU  - S. V. Lemeshevskii
AU  - M. M. Chuiko
TI  - Numerical modeling of high-energy ion implantation using Fokker – Planck equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 28
EP  - 36
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/
LA  - ru
ID  - BGUMI_2017_2_a4
ER  - 
%0 Journal Article
%A V. Belko
%A S. V. Lemeshevskii
%A M. M. Chuiko
%T Numerical modeling of high-energy ion implantation using Fokker – Planck equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 28-36
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/
%G ru
%F BGUMI_2017_2_a4
V. Belko; S. V. Lemeshevskii; M. M. Chuiko. Numerical modeling of high-energy ion implantation using Fokker – Planck equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 28-36. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/

[1] J. F. Ziegler, J. P. Biersack, U. Littmark, “Stopping and ranges of ions in solids”, New York, 1985

[2] F. F. Komarov, A. F. Burenkov, A. P. Novikov, “Ionnaya implantatsiya”, Minsk, 1994

[3] A. F. Burenkov, F. F. Komarov, M. M. Temkin, “Ion range distribution calculation based on a numerical solution of the Boltzmann transport equation”, Radiat. Eff, 86 (1984), 161–167 | DOI

[4] H. N. Brm, “SRIM – The stopping and range of ions in matter”, [Electronic resource], 2017

[5] V. S. Remizovich, D. B. Rogozkin, M. I. Ryazanov, “Fluktuatsii probegov zaryazhennykh chastits”, 1988

[6] G. C. Pompaning, “The Fokker – Planck operator as an asymptotic limit”, Math. Models Methods Appl. Sci, 2 (1992), 21–36 | DOI | MR

[7] A. D. Kim, P. Tranquilli, “Numerical solution of the Fokker – Planck equation with variable coefficients”, J. Quant. Spectrosc. Radiat. Transf, 109 (2008), 727–740 | DOI

[8] K. Przybylski, J. Ligou, “Numerical analysis of the Boltzmann equation including Fokker – Planck terms”, Nucl. Sci. Eng, 81 (1982), 92–109 | DOI

[9] F. F. Komarov, I. E. Mozolevski, P. P. Matus, “Distribution of implanted impurities and deposited energy in high-energy ion implantation”, Nucl. Instr. Meth. Phys, 124 (1997), 478–483 | DOI

[10] I. E. Mozolevski, P. P. Matus, D. A. Malafei, “The Fokker – Planck approximation of boundary value problems for the straightahead Boltzmann transport equation”, FDS-2000 : proc. of the conf. (Palanga), 2000, 163–171 | MR

[11] I. Mozolevski, P. L. Grande, “On the use of the backward Fokker – Planck equation to calculate range profiles”, Nucl. Instr. Meth. Phys, 170 (2000), 45–52 | DOI

[12] I. Mozolevski, “Modeling of high energy ion implantation based on splitting of the Boltzmann transport equation”, Comput. Mater. Sci, 25 (2002), 435–446 | DOI

[13] N. S. Bakhvalov, “Chislennye metody (analiz, algebra, obyknovennye differentsialnye uravneniya)”, 1974 | Zbl

[14] A. A. Samarskii, P. N. Vabischevich, “Chislennye metody resheniya zadach konvektsii – diffuzii”, 1997

[15] G. E. Schneider, M. Zedan, “A modified strongly implicit procedure for the numerical solution of field problems”, Numer. Heat Transf, 4 (1981), 1–19 | DOI