Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_2_a4, author = {V. Belko and S. V. Lemeshevskii and M. M. Chuiko}, title = {Numerical modeling of high-energy ion implantation using {Fokker} {\textendash} {Planck} equations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {28--36}, publisher = {mathdoc}, volume = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/} }
TY - JOUR AU - V. Belko AU - S. V. Lemeshevskii AU - M. M. Chuiko TI - Numerical modeling of high-energy ion implantation using Fokker – Planck equations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 28 EP - 36 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/ LA - ru ID - BGUMI_2017_2_a4 ER -
%0 Journal Article %A V. Belko %A S. V. Lemeshevskii %A M. M. Chuiko %T Numerical modeling of high-energy ion implantation using Fokker – Planck equations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 28-36 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/ %G ru %F BGUMI_2017_2_a4
V. Belko; S. V. Lemeshevskii; M. M. Chuiko. Numerical modeling of high-energy ion implantation using Fokker – Planck equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 28-36. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a4/
[1] J. F. Ziegler, J. P. Biersack, U. Littmark, “Stopping and ranges of ions in solids”, New York, 1985
[2] F. F. Komarov, A. F. Burenkov, A. P. Novikov, “Ionnaya implantatsiya”, Minsk, 1994
[3] A. F. Burenkov, F. F. Komarov, M. M. Temkin, “Ion range distribution calculation based on a numerical solution of the Boltzmann transport equation”, Radiat. Eff, 86 (1984), 161–167 | DOI
[4] H. N. Brm, “SRIM – The stopping and range of ions in matter”, [Electronic resource], 2017
[5] V. S. Remizovich, D. B. Rogozkin, M. I. Ryazanov, “Fluktuatsii probegov zaryazhennykh chastits”, 1988
[6] G. C. Pompaning, “The Fokker – Planck operator as an asymptotic limit”, Math. Models Methods Appl. Sci, 2 (1992), 21–36 | DOI | MR
[7] A. D. Kim, P. Tranquilli, “Numerical solution of the Fokker – Planck equation with variable coefficients”, J. Quant. Spectrosc. Radiat. Transf, 109 (2008), 727–740 | DOI
[8] K. Przybylski, J. Ligou, “Numerical analysis of the Boltzmann equation including Fokker – Planck terms”, Nucl. Sci. Eng, 81 (1982), 92–109 | DOI
[9] F. F. Komarov, I. E. Mozolevski, P. P. Matus, “Distribution of implanted impurities and deposited energy in high-energy ion implantation”, Nucl. Instr. Meth. Phys, 124 (1997), 478–483 | DOI
[10] I. E. Mozolevski, P. P. Matus, D. A. Malafei, “The Fokker – Planck approximation of boundary value problems for the straightahead Boltzmann transport equation”, FDS-2000 : proc. of the conf. (Palanga), 2000, 163–171 | MR
[11] I. Mozolevski, P. L. Grande, “On the use of the backward Fokker – Planck equation to calculate range profiles”, Nucl. Instr. Meth. Phys, 170 (2000), 45–52 | DOI
[12] I. Mozolevski, “Modeling of high energy ion implantation based on splitting of the Boltzmann transport equation”, Comput. Mater. Sci, 25 (2002), 435–446 | DOI
[13] N. S. Bakhvalov, “Chislennye metody (analiz, algebra, obyknovennye differentsialnye uravneniya)”, 1974 | Zbl
[14] A. A. Samarskii, P. N. Vabischevich, “Chislennye metody resheniya zadach konvektsii – diffuzii”, 1997
[15] G. E. Schneider, M. Zedan, “A modified strongly implicit procedure for the numerical solution of field problems”, Numer. Heat Transf, 4 (1981), 1–19 | DOI