Variogram analysis of stochastic processes
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 23-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the semivariogram of an intrinsically stationary continuous-time random process with finite second moment are investigated. A necessary and sufficient conditions for a continuous function to be semivariogram are found. Confidence intervals for the semivariogram of Gaussian stationary stochastic process are defined. Properties of $\chi^{2}$-distribution are used for constructing confidence intervals for semivariogram. The proposed confidence intervals are more informative compared with point estimates of the semivariogram.
Keywords: stochastic process; intrinsic stationarity; semivariogram; confidence interval.
@article{BGUMI_2017_2_a3,
     author = {T. V. Tsekhavaya},
     title = {Variogram analysis of stochastic processes},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {23--27},
     publisher = {mathdoc},
     volume = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a3/}
}
TY  - JOUR
AU  - T. V. Tsekhavaya
TI  - Variogram analysis of stochastic processes
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 23
EP  - 27
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a3/
LA  - ru
ID  - BGUMI_2017_2_a3
ER  - 
%0 Journal Article
%A T. V. Tsekhavaya
%T Variogram analysis of stochastic processes
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 23-27
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a3/
%G ru
%F BGUMI_2017_2_a3
T. V. Tsekhavaya. Variogram analysis of stochastic processes. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 23-27. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a3/

[1] T. V. Tsekhovaya, “Svoistva variogrammy vnutrenne statsionarnykh sluchainykh protsessov”, Teoriya veroyatnostei, matematicheskaya statistika i ikh prilozheniya: materialy Mezhduna. nauch. konf. (Minsk), 2004, 181–186

[2] T. V. Tsekhovaya, “Asimptoticheskoe raspredelenie otsenki semivariogrammy gaussovskogo sluchainogo protsessa”, Vestn. BGU. Fizika. Matematika. Informatika, 1 (2015), 89–95

[3] T. V. Tsekhovaya, “Svoistva vnutrenne statsionarnykh sluchainykh protsessov”, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 1 (2017), 28–33 | MR

[4] A. N. Shiryaev, “Veroyatnost”, 1989

[5] G. Dzhenkins, D. Vatts, “Spektralnyi analiz i ego prilozheniya”, 1, 1971

[6] “Spravochnik po prikladnoi statistike YuN Tyurina”, 1, 1989