Verification of modular secret sharing
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper new scheme of secret verification are constructed. Verification with trusted party participation is conducted with help of an external device, which takes an arbitrary polynomial $S(x)$, input element $x_{0}\in F_{p^{n}}$ and returns a value $\xi S(x_{0})$ , where $\xi$ is an $F_{p^{n}}$ – valued uniformly distributed random variable. It is shown that using of such device allows any user to verify his secret. Polynomial verification scheme is based on verification of divisibility $g(x)|f(x)$ in the ring $Z(x)$. Only a value of polynomial $S(x)$ in unknown point $x=l$ is disclosed at the proposed verification method. Benaloh’s verification of the modular scheme allows any shareholder to ensure in consistency of all partial secrets, i. e. any legal group of shareholders can restore the secret $S(x)$ correctly. None information about the secret $S(x)$, excepting a prior information, is disclosed. The proposed protocols can be used safely for schemes over arbitrary finite fields without additional restrictions on a size of a filed.
Keywords: polynomial modular scheme; secret; partial secret; finite field.
@article{BGUMI_2017_2_a2,
     author = {M. M. Vas'kovskii and G. V. Matveev},
     title = {Verification of modular secret sharing},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a2/}
}
TY  - JOUR
AU  - M. M. Vas'kovskii
AU  - G. V. Matveev
TI  - Verification of modular secret sharing
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 17
EP  - 22
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a2/
LA  - ru
ID  - BGUMI_2017_2_a2
ER  - 
%0 Journal Article
%A M. M. Vas'kovskii
%A G. V. Matveev
%T Verification of modular secret sharing
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 17-22
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a2/
%G ru
%F BGUMI_2017_2_a2
M. M. Vas'kovskii; G. V. Matveev. Verification of modular secret sharing. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 17-22. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a2/

[1] R. Cramer, I. Damgard, J. Nielsen, “Multiparty Computation from Threshold Homomorphic Encryption”, Lect. Notes Comput. Sci, 2045 (2001), 280–300 | DOI | MR | Zbl

[2] J. Bethencourt, A. Sahai, B. Waters, “Ciphertext-policy attribute-based encryption”, Proceedings of IEEE Symposium on Security and Privacy. Berkley, 2007, 321–334

[3] J. Benaloh, “Secret sharing homomorphisms: keeping shares of a secret”, Lect. Notes Comput. Sci, 263 (1987), 251–260 | DOI | MR | Zbl

[4] M. Blum, P. Feldman, S. Micali, “Non Interactive Zero-Knowledge and Its Applications”, Proceedings of the 20th ACM Symposium on Theory of Computing. New York, 1988, 103–112 | MR

[5] T. Galibus, G. Matveev, N. Shenets, “Some structural and security properties of the modular secret sharing”, Proceedings of SYNASC’08 : IEEE Comp. soc. press (Timisoara), 2008, 197–200

[6] tekhnologii. Informatsionnye, “Algoritmy razdeleniya sekreta”, 2011

[7] T. V. Galibus, G. V. Matveev, “Verifikatsiya parametrov modulyarnogo razdeleniya sekreta”, Vestn. BGU. Fizika. Matematika. Informatika, 1 (2015), 76–79

[8] T. Galibus, G. Matveev, “Generalized Mignotte Sequences in Polynomial Rings”, ENTCS, 186 (2007), 43–48 | MR | Zbl

[9] A. Shamir, “How to share a secret”, Commun. ACM, 22(11) (1979), 612–613 | DOI | MR | Zbl

[10] C. A. Asmuth, J. Bloom, “A modular approach to key safeguarding”, IEEE Trans. Inf. Theory, 29, issue 2 (1983), 208–210 | DOI | MR | Zbl

[11] M. M. Vaskovskii, G. V. Matveev, “Polinomialnaya verifikatsiya skhemy Shamira”, Informatsionnye sistemy i tekhnologii : Mezhdunar. kongr. po informatike (Minsk), 2016, 431–433