Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_2_a0, author = {A. P. Sadovskii and T. Makavetskaya and D. Cherginets}, title = {The radical of the focal values ideal of the complex {Kukles} system}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {4--11}, publisher = {mathdoc}, volume = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/} }
TY - JOUR AU - A. P. Sadovskii AU - T. Makavetskaya AU - D. Cherginets TI - The radical of the focal values ideal of the complex Kukles system JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 4 EP - 11 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/ LA - ru ID - BGUMI_2017_2_a0 ER -
%0 Journal Article %A A. P. Sadovskii %A T. Makavetskaya %A D. Cherginets %T The radical of the focal values ideal of the complex Kukles system %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 4-11 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/ %G ru %F BGUMI_2017_2_a0
A. P. Sadovskii; T. Makavetskaya; D. Cherginets. The radical of the focal values ideal of the complex Kukles system. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/
[1] N. G. Lloyd, J. M. Pearson, “Computing centre conditions for certain cubuc systems”, J. Comput. Appl. Math, 40 (1992), 323–336 | DOI | MR | Zbl
[2] A. P. Sadovskii, “Reshenie problemy tsentra i fokusa dlya kubicheskoi sistemy nelineinykh kolebanii”, Differents. uravneniya, 33(2) (1997), 236–244 | Zbl
[3] A. P. Sadovskii, “Kubicheskie sistemy nelineinykh kolebanii s semyu predelnymi tsiklami”, Differents. uravneniya, 39(4) (2003), 472–481 | Zbl
[4] N. G. Lloyd, J. M. Pearson, “Bifurcations of limit cycles and integrability of planar dynamical systems in complex form”, J. Phys. A: Math. Gen, 32(10) (1999), 1973–1984 | DOI | MR | Zbl
[5] J. M. Pearson, N. G. Lloyd, “Kukles revisited: Advances in computing techniques”, Comput. Math. with Appl, 60 (2010), 2797–2805 | DOI | MR | Zbl
[6] A. P. Sadovskii, “Tsentry i ikh izokhronnost”, XII Belorusskaya matematicheskaya konferentsiya: materialy Mezhdunar. nauch. konf. (Minsk), 2 (2016), 52
[7] D. Koks, D. Littl, D. O’Shi, “Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry”, 2000
[8] A. P. Sadovskii, “Polinomialnye idealy i mnogoobraziya”, Minsk, 2008
[9] A. P. Sadovskii, “K usloviyam tsentra i fokusa dlya uravnenii nelineinykh kolebanii”, Differents. uravneniya, 15(9) (1979), 1716–1719 | MR | Zbl
[10] A. P. Sadovskii, T. V. Scheglova, “Sistema Lenara s kompleksnymi koeffitsientami i metod Cherkasa”, Vesn. Grodn. dzyarzh. un-ta imya Yanki Kupaly. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnika i upraulenne, 1(170) (2014), 21–33
[11] A. P. Sadovskii, T. V. Scheglova, “Mnogoobrazie kompleksnogo i veschestvennogo tsentra dvumernykh avtonomnykh polinomialnykh differentsialnykh sistem”, Doklady NAN Belarusi, 59(4) (2015), 34–40 | Zbl