The radical of the focal values ideal of the complex Kukles system
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 4-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article it is considered the center-focus problem for complex Kukles system $\dot{x}=y, ~\dot{y}=-x+Ax^{2}+3Bxy+Cy^{2}+Kx^{3}+3Lx^{2}y+Mxy^{2}+Ny^{3}$. The problem is solved by the new method, obtained by A. P. Sadovski and based on the method of normal forms. Instead of investigating the variety of ideal of focal values it is proposed to study the variety of ideal with the basis – polynomials obtained by a new method. The study of the radical of such ideal is divided into two parts: the trivial case where $BN=0$, and the case of $BN\neq 0$. If $BN=0$ it is obtained five series of center conditions for the complex system, in particular, four series of center conditions for the real system. In the case of $BN\neq 0$ it can be assumed $B=N$ in the Kukles system. This assumption simplifies the further study of this case (it is obtained three series of the existence of the complex center, in particular, two series of the existence of the real center). Thus, as a result of research in the present paper it is presented the necessary and sufficient conditions for the complex and real centers existence for the complex and real Kukles systems respectively.
Keywords: center-focus problem; Kukles system; complex center variety; focal values; normal forms; radical of ideal.
@article{BGUMI_2017_2_a0,
     author = {A. P. Sadovskii and T. Makavetskaya and D. Cherginets},
     title = {The radical of the focal values ideal of the complex {Kukles} system},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {4--11},
     publisher = {mathdoc},
     volume = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/}
}
TY  - JOUR
AU  - A. P. Sadovskii
AU  - T. Makavetskaya
AU  - D. Cherginets
TI  - The radical of the focal values ideal of the complex Kukles system
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 4
EP  - 11
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/
LA  - ru
ID  - BGUMI_2017_2_a0
ER  - 
%0 Journal Article
%A A. P. Sadovskii
%A T. Makavetskaya
%A D. Cherginets
%T The radical of the focal values ideal of the complex Kukles system
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 4-11
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/
%G ru
%F BGUMI_2017_2_a0
A. P. Sadovskii; T. Makavetskaya; D. Cherginets. The radical of the focal values ideal of the complex Kukles system. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2017), pp. 4-11. http://geodesic.mathdoc.fr/item/BGUMI_2017_2_a0/

[1] N. G. Lloyd, J. M. Pearson, “Computing centre conditions for certain cubuc systems”, J. Comput. Appl. Math, 40 (1992), 323–336 | DOI | MR | Zbl

[2] A. P. Sadovskii, “Reshenie problemy tsentra i fokusa dlya kubicheskoi sistemy nelineinykh kolebanii”, Differents. uravneniya, 33(2) (1997), 236–244 | Zbl

[3] A. P. Sadovskii, “Kubicheskie sistemy nelineinykh kolebanii s semyu predelnymi tsiklami”, Differents. uravneniya, 39(4) (2003), 472–481 | Zbl

[4] N. G. Lloyd, J. M. Pearson, “Bifurcations of limit cycles and integrability of planar dynamical systems in complex form”, J. Phys. A: Math. Gen, 32(10) (1999), 1973–1984 | DOI | MR | Zbl

[5] J. M. Pearson, N. G. Lloyd, “Kukles revisited: Advances in computing techniques”, Comput. Math. with Appl, 60 (2010), 2797–2805 | DOI | MR | Zbl

[6] A. P. Sadovskii, “Tsentry i ikh izokhronnost”, XII Belorusskaya matematicheskaya konferentsiya: materialy Mezhdunar. nauch. konf. (Minsk), 2 (2016), 52

[7] D. Koks, D. Littl, D. O’Shi, “Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry”, 2000

[8] A. P. Sadovskii, “Polinomialnye idealy i mnogoobraziya”, Minsk, 2008

[9] A. P. Sadovskii, “K usloviyam tsentra i fokusa dlya uravnenii nelineinykh kolebanii”, Differents. uravneniya, 15(9) (1979), 1716–1719 | MR | Zbl

[10] A. P. Sadovskii, T. V. Scheglova, “Sistema Lenara s kompleksnymi koeffitsientami i metod Cherkasa”, Vesn. Grodn. dzyarzh. un-ta imya Yanki Kupaly. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnika i upraulenne, 1(170) (2014), 21–33

[11] A. P. Sadovskii, T. V. Scheglova, “Mnogoobrazie kompleksnogo i veschestvennogo tsentra dvumernykh avtonomnykh polinomialnykh differentsialnykh sistem”, Doklady NAN Belarusi, 59(4) (2015), 34–40 | Zbl