Using histogram of oriented gradients for fingerprint classification
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 52-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article proposes method for classifying fingerprints. The proposed method can be used for fingerprint identification and biometric analysis. Article describes correlations between fingertip patterns and local area gradient orientation distribution. Method effectiveness is analyzed using two approaches: with simple implementation and with artificial neural network. Theoretical and experimental research proves that the orientation histogram has different characteristics for fingerprints containing different types of patterns. The results of numerical experiments confirm the theoretical conclusions and prove the efficiency of the proposed algorithm.
Keywords: fingerprint; classification; local orientation; orientation field; histogram; neural network.
@article{BGUMI_2017_1_a8,
     author = {V. Kulinkovich},
     title = {Using histogram of oriented gradients for fingerprint classification},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {52--60},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a8/}
}
TY  - JOUR
AU  - V. Kulinkovich
TI  - Using histogram of oriented gradients for fingerprint classification
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 52
EP  - 60
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a8/
LA  - ru
ID  - BGUMI_2017_1_a8
ER  - 
%0 Journal Article
%A V. Kulinkovich
%T Using histogram of oriented gradients for fingerprint classification
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 52-60
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a8/
%G ru
%F BGUMI_2017_1_a8
V. Kulinkovich. Using histogram of oriented gradients for fingerprint classification. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 52-60. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a8/

[1] D. Maltoni, “Handbook of Fingerprint Recognition”, New York, 2003

[2] T. D. Gladkova, “Kozhnye uzory kisti i stopy obezyan i cheloveka”, 1966

[3] N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection”, Computer Vision and Pattern Recognition: IEEE Comput. Soc. Conf. San Diego, 1 (2005), 886–893

[4] “Gistogramma napravlennykh gradientov”, [Elektronnyi resurs], 2010 | DOI

[5] M. Kass, A. Witkin, “Analyzing oriented pattern”, Comput. Vis., Graph., Image Process, 37 (1987), 362–397

[6] J. Zhou, J. Gu, “A model-based method for the computation of fingerprints orientation field”, IEEE Trans. Image Process, 13 (2004), 821–835

[7] M. Yu. Selyaninov, V. A. Kulinkovich, “Postroenie polya napravlenii papillyarnykh linii daktiloskopicheskikh otpechatkov v sistemakh biometricheskogo analiza”, Elektronika info, 9(123) (2015), 56–59

[8] “Fingerprint verification Competition 2004”, [Electronic resource], 2004 | DOI