Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_1_a7, author = {V. V. Korolevich and D. G. Medvedev}, title = {Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by {Volterra} integral equation of the second kind}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {47--52}, publisher = {mathdoc}, volume = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/} }
TY - JOUR AU - V. V. Korolevich AU - D. G. Medvedev TI - Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by Volterra integral equation of the second kind JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 47 EP - 52 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/ LA - ru ID - BGUMI_2017_1_a7 ER -
%0 Journal Article %A V. V. Korolevich %A D. G. Medvedev %T Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by Volterra integral equation of the second kind %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 47-52 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/ %G ru %F BGUMI_2017_1_a7
V. V. Korolevich; D. G. Medvedev. Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by Volterra integral equation of the second kind. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 47-52. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/