Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_1_a7, author = {V. V. Korolevich and D. G. Medvedev}, title = {Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by {Volterra} integral equation of the second kind}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {47--52}, publisher = {mathdoc}, volume = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/} }
TY - JOUR AU - V. V. Korolevich AU - D. G. Medvedev TI - Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by Volterra integral equation of the second kind JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 47 EP - 52 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/ LA - ru ID - BGUMI_2017_1_a7 ER -
%0 Journal Article %A V. V. Korolevich %A D. G. Medvedev %T Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by Volterra integral equation of the second kind %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 47-52 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/ %G ru %F BGUMI_2017_1_a7
V. V. Korolevich; D. G. Medvedev. Solution of the axismmetric plane thermoelasticity problem for a polar-orthotropic disc of variable thickness in the rotating thermal field by Volterra integral equation of the second kind. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 47-52. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a7/
[1] V. V. Vorobei, E. V. Morozov, O. V. Tatarnikov, “Raschet termonapryazhennykh konstruktsii iz kompozitsionnykh materialov”, 1992
[2] S. M. Durgaryan, “Temperaturnyi raschet ortotropnoi sloistoi plastinki pri uprugikh postoyannykh i koeffitsiente temperaturnogo rasshireniya, zavisyaschikh ot temperatury”, Izv. Akad. nauk Arm. SSR. Fiz.-matem. nauki, 13(2) (1960), 73–87
[3] S. P. Timoshenko, D. zh. Guder, “Teoriya uprugosti”, 1979
[4] E. F. Burmistrov, N. M. Maslov, “Napryazheniya v ortotropnykh vraschayuschikhsya diskakh peremennoi tolschiny”, Nekotorye zadachi teorii uprugosti o kontsentratsii napryazhenii i deformatsii uprugikh tel: sb. nauch. st. Sarat. gos. un-ta im. NG Chernyshevskogo, 5 (1970), 80–86, Saratov
[5] M. L. Krasnov, A. I. Kiselev, G. I. Makarenko, “Integralnye uravneniya: zadachi i primery s podrobnymi resheniyami”, 2007
[6] A. F. Verlan, V. S. Sizikov, “Integralnye uravneniya: metody, algoritmy, programmy”, Kiev, 1986
[7] S. V. Boyarshinov, “Osnovy stroitelnoi mekhaniki mashin”, 1973