Viscoelastic bending of beams of variable curvature radius and stiffness
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

E. P. Popov method of analysis of elastic beams flat bending with large displacements was generalized to the case of viscoelastic beams of variable curvature radius and stiffness using an example of bending of flat springs of variable thickness symmetrical profile. The problem is reduced to the solution of a number of boundary creep problems with link conditions on section joints by means of partitioning the original beam into sections with a constant curvature radius and stiffness. The solutions are based on exact non-linearized equation of curved sections motion (so-called nonlinear pendulum vibration equation) taking into account the changes in the magnitude of the bending moment under creep. Values of curvature radius and displacement of beams subjected to creep deformation were determined. Viscoelastic bending problem of flat polymeric spring of variable curvature radius and stiffness was solved analytically as an example.
Keywords: viscoelastic bending; large displacements; polymeric material.
@article{BGUMI_2017_1_a6,
     author = {V. Tamila and Ya. Kochyk and I. A. Tarasyuk and A. S. Kravchuk},
     title = {Viscoelastic bending of beams of variable curvature radius and stiffness},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a6/}
}
TY  - JOUR
AU  - V. Tamila
AU  - Ya. Kochyk
AU  - I. A. Tarasyuk
AU  - A. S. Kravchuk
TI  - Viscoelastic bending of beams of variable curvature radius and stiffness
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 39
EP  - 46
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a6/
LA  - ru
ID  - BGUMI_2017_1_a6
ER  - 
%0 Journal Article
%A V. Tamila
%A Ya. Kochyk
%A I. A. Tarasyuk
%A A. S. Kravchuk
%T Viscoelastic bending of beams of variable curvature radius and stiffness
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 39-46
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a6/
%G ru
%F BGUMI_2017_1_a6
V. Tamila; Ya. Kochyk; I. A. Tarasyuk; A. S. Kravchuk. Viscoelastic bending of beams of variable curvature radius and stiffness. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 39-46. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a6/

[1] E. P. Popov, “Teoriya i raschet gibkikh uprugikh sterzhnei”, 1986

[2] A. S. Kravchuk, E. V. Tomilo, “Vyazkouprugii chistyi izgib sloistykh i kompozitsionnykh prizmaticheskikh brusev”, Mekhanika mashin, mekhanizmov i materialov, 3(28) (2014), 48–52

[3] Yu. N. Rabotnov, “Elementy nasledstvennoi mekhaniki tverdykh tel”, 1977

[4] P. V. Fernati, “Modelirovanie nelineinykh protsessov polzuchesti na osnove kubicheskoi teorii vyazkouprugosti”, Vestn. Nats. tekhn. un-ta «KhPI». Temat. vyp.: Informatika i modelirovanie, 21 (2010), 182–192