Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_1_a5, author = {Ya. Zhyvitsa and K. G. Kuz'min}, title = {On calculation of the stability radius for a minimum spanning tree}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {34--38}, publisher = {mathdoc}, volume = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a5/} }
TY - JOUR AU - Ya. Zhyvitsa AU - K. G. Kuz'min TI - On calculation of the stability radius for a minimum spanning tree JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 34 EP - 38 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a5/ LA - ru ID - BGUMI_2017_1_a5 ER -
%0 Journal Article %A Ya. Zhyvitsa %A K. G. Kuz'min %T On calculation of the stability radius for a minimum spanning tree %J Journal of the Belarusian State University. Mathematics and Informatics %D 2017 %P 34-38 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a5/ %G ru %F BGUMI_2017_1_a5
Ya. Zhyvitsa; K. G. Kuz'min. On calculation of the stability radius for a minimum spanning tree. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 34-38. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a5/
[1] E. N. Gordeev, “Issledovanie ustoichivosti zadachi o kratchaishem ostovnom dereve v metrike l1”, Zhurnal vychisl. matematiki i matem. fiziki, 39(5) (1999), 770–778
[2] I. V. Sergienko, V. P. Shilo, “Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya”, Kiev, 2003
[3] V. Emelichev, D. Podkopaev, “Quantitative stability analysis for vector problems of 0–1 programming”, Discret. Optim., 7(1/2) (2010), 48–63
[4] J. Roland, Y. Smet, J. R. Figueira, “On the calculation of stability radius for multi-objective combinatorial optimization problems by inverse optimization”, 4OR, 10(4) (2012), 379–389
[5] K. G. Kuzmin, “Edinyi podkhod k nakhozhdeniyu radiusov ustoichivosti v mnogokriterialnoi zadache o maksimalnom razreze grafa”, Diskret. analiz i issled. operatsii, 22(5) (2015), 30–51
[6] D. Eppstein, “Finding the k smallest spanning trees”, BIT Numer. Math., 32, # 2 (1992), 237–248
[7] G. N. Frederickson, “Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and Smallest Spanning Trees Time”, SIAM J. Comput., 26(2) (1997), 484–538
[8] S. Pettie, “Sensitivity Analysis of Minimum Spanning Trees in Sub-Inverse-Ackermann Time”, J. Graph Algorithms Appl., 19(1) (2015), 375–391