Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2017_1_a3, author = {K. Haitsiukevich and N. N. Troush}, title = {Some properties of fractional brownian motion}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {23--27}, publisher = {mathdoc}, volume = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a3/} }
TY - JOUR AU - K. Haitsiukevich AU - N. N. Troush TI - Some properties of fractional brownian motion JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2017 SP - 23 EP - 27 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a3/ LA - ru ID - BGUMI_2017_1_a3 ER -
K. Haitsiukevich; N. N. Troush. Some properties of fractional brownian motion. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 23-27. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a3/
[1] B. B. Mandelbrot, J. W. van-Ness, “Fractional Brownian motion, fractional noises and applications”, SIAM Rev, 10, # 4 (1968), 422–437
[2] G. Samorodnitsky, M. S. Taqqu, “Stable non-Gaussian random processes”, New York, 1994
[3] A. N. Shiryaev, “Osnovy stokhasticheskoi i finansovoi matematiki”, 1998
[4] E. Lakhel, M. A. McKibben, “Controllability of neutral stochastic integro-differential evolution equations driven by a fractional Brownian motion”, Afr. Mat, 7 (2016), 1–14
[5] T. Dieker, “Simulation of fractional Brownian motion”, CWI and University of Twente Department of Mathematical Sciences. Amsterdam, 2004, 12
[6] I. Norros, “A Storage Model with Self-Similar Input”, Queuing Syst, 16 (1994), 387–396
[7] P. Cheredito, “Arbitrage in fractional Brownian motion models”, Finance Stoch, 7 (2003), 533–553
[8] D. Ilalan, “Elliott wave principle and the corresponding fractional Brownian motion in stock markets: Evidence from Nikkei 225 index”, Chaos, Solitons and Fractals, 92 (2016), 137–141